
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 1, pp. 192–223. DOI:10.46586/tosc.v2023.i1.192-223

Tight Multi-User Security Bound of DbHtS
Nilanjan Datta1, Avijit Dutta1, Mridul Nandi1,2 and Suprita Talnikar2

1 Institute for Advancing Intelligence, TCG CREST, Kolkata, India
2 Indian Statistical Institute, Kolkata, India

nilanjan.datta@tcgcrest.org,avirocks.dutta13@gmail.com,mridul.nandi@gmail.com,
suprita45@gmail.com

Abstract. In CRYPTO’21, Shen et al. proved that Two-Keyed-DbHtS construction
is secure up to 22n/3 queries in the multi-user setting independent of the number
of users. Here the underlying double-block hash function H of the construction
is realized as the concatenation of two independent n-bit keyed hash functions
(HKh,1, HKh,2), and the security holds under the assumption that each of the n-bit
keyed hash function is universal and regular. The authors have also demonstrated the
applicability of their result to the key-reduced variants of DbHtS MACs, including
2K-SUM-ECBC, 2K-PMAC_Plus and 2K-LightMAC_Plus without requiring domain
separation technique and proved 2n/3-bit multi-user security of these constructions in
the ideal cipher model. Recently, Guo and Wang have invalidated the security claim
of Shen et al.’s result by exhibiting three constructions, which are instantiations of
the Two-Keyed-DbHtS framework, such that each of their n-bit keyed hash functions
are O(2−n) universal and regular, while the constructions themselves are secure
only up to the birthday bound. In this work, we show a sufficient condition on the
underlying Double-block Hash (DbH) function, under which we prove an improved
3n/4-bit multi-user security of the Two-Keyed-DbHtS construction in the ideal-cipher
model. To be more precise, we show that if each of the n-bit keyed hash function is
universal, regular, and cross-collision resistant then it achieves the desired security.
As an instantiation, we show that two-keyed Polyhash-based DbHtS construction is
multi-user secure up to 23n/4 queries in the ideal-cipher model. Furthermore, due
to the generic attack on DbHtS constructions by Leurent et al. in CRYPTO’18, our
derived bound for the construction is tight.
Keywords: DbHtS · PRF · Polyhash · Tight Multi-user Security · H-Coefficient
Technique · Mirror Theory

1 Introduction
Hash-then-PRF [Sho00] (or HtP) is a well-known paradigm for designing variable input-
length PRFs, in which an input message of arbitrary length is hashed and the hash value
is encrypted through a PRF to obtain a short tag. Most popular MACs including the
CBC-MAC [BKR00], PMAC [BR02], OMAC [IK03] and LightMAC [LPTY16] are designed
using the HtP paradigm. Although the method is simple, in particular being deterministic
and stateless, the security of MACs following the HtP paradigm is capped at the birthday
bound due to the collision probability of the hash function. Birthday bound-secure
constructions are acceptable in practice when any of these MACs are instantiated with
a block cipher of moderately large block size. For example, instantiating PMAC with
AES-128 permits roughly 248 queries (using 5ℓq2/2n [Nan17] bound) when the longest
message size is 216 blocks, and the success probability of breaking the scheme is restricted
to 2−10. However, the same construction becomes vulnerable if instantiated with some
lightweight (smaller block size) block ciphers, whose number has grown tremendously in

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-11-23 Accepted: 2023-01-23 Published: 2023-03-10

https://doi.org/10.46586/tosc.v2023.i1.192-223
mailto:nilanjan.datta@tcgcrest.org, avirocks.dutta13@gmail.com, mridul.nandi@gmail.com, suprita45@gmail.com
mailto:nilanjan.datta@tcgcrest.org, avirocks.dutta13@gmail.com, mridul.nandi@gmail.com, suprita45@gmail.com
http://creativecommons.org/licenses/by/4.0/

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 193

recent years, e.g. PRESENT [BKL+07], GIFT [BPP+17], LED [GPPR12], etc. For example,
PMAC, when instantiated with the PRESENT block cipher (a 64-bit block cipher), permits
only about 216 queries when the longest message size is 216 blocks, and the probability of
breaking the scheme is 2−10. Therefore, it becomes risky to use birthday bound-secure
constructions instantiated with lightweight block ciphers. In fact, in a large number of
financial sectors, web browsers still widely use 64-bit block ciphers 3-DES instead of AES
in their legacy applications with backward compatibility feature, as using the latter in
corporate mainframe computers is more expensive. However, it does not give adequate
security if the mode in which 3-DES is used provides only birthday bound security, and
hence a beyond birthday secure mode solves the issue. Although many secure practical
applications use the standard AES-128, which provides 64-bit security in a birthday bound-
secure mode, which is adequate for the current technology, it may not remain so in the
near future. In such a situation, using a mode with beyond the birthday bound security
instead of replacing the cipher with a larger block size is a better option. 1

Double-Block Hash-then-Sum. Many studies tried to tweak the HtP design paradigm
to obtain beyond the birthday bound secure MACs; while they possess a similar structural
design, the internal state of the hash function is doubled and the two n-bit hash values
are first encrypted and then xored together to produce the output. In [Yas10], Yasuda
proposed a beyond the birthday bound secure deterministic MAC called SUM-ECBC, a
rate-1/2 sequential mode of construction with four block cipher keys. Followed by this
work, Yasuda [Yas11] came up with another deterministic MAC called PMAC_Plus, but
unlike SUM-ECBC, PMAC_Plus is a rate-1 parallel mode of construction with three block
cipher keys. Zhang et al. [ZWSW12] proposed another rate-1 beyond the birthday bound
secure deterministic MAC called 3kf9 with three block cipher keys. In [Nai17], Naito
proposed LightMAC_Plus, a rate (1− s/n) parallel mode of operation, where s is the size
of the block counter. The structural design of all these constructions first applies a 2n-bit
hash function on the message, then the two n-bit output values are encrypted and xored
together to produce the tag, where n is the block size of the block cipher. Moreover, all of
them also give 2n/3-bit security. In FSE 2019, Datta et al. [DDNP18] proposed a generic
design paradigm dubbed as the double-block hash-then-sum or DbHtS, defined as follows:

DbHtS(M) ∆= EK1(Σ)⊕ EK2(Θ), (Σ, Θ)← HKh
(M),

where HKh
is a double-block hash function that maps an arbitrary-length string to a 2n-bit

string. Within this unified framework, they revisited the security proof of existing DbHtS
constructions, including PolyMAC [KLL20], SUM-ECBC [Yas10], PMAC_Plus [Yas11],
3kf9 [ZWSW12] and LightMAC_Plus [Nai17] and also their two-keyed versions [DDNP18]
and confirmed that all the constructions are secure up to 22n/3 queries when they are
instantiated with an n-bit block cipher.
In CRYPTO 2018, Leurent et al. [LNS18] proposed a generic attack on all these construc-
tions using 23n/4 (short message) queries, leaving a gap between the upper and the lower
bounds for the provable security of DbHtS constructions. Recently, Kim et al. [KLL20] have
improved the bound of DbHtS constructions from 22n/3 to 23n/4. They have shown that if
the underlying 2n-bit hash function is the concatenation of two independent n-bit-universal
hash functions 2, then the resulting DbHtS paradigm is secure up to 23n/4 queries. They
have also improved the security bound of PMAC_Plus, 3kf9 and LightMAC_Plus from 22n/3

to 23n/4 and hence closed the gap between the upper and the lower bounds of the provable
security of DbHtS constructions.
Multi-user security of DbHtS. We have so far discussed the security bounds of
DbHtS constructions in which adversaries are given access to some keyed oracles for

1Note that there are no standard block ciphers of size higher than 128 bits.
2A family of keyed hash functions is said to be universal if for any distinct x and x′, the probability of

a collision in their hash values for a randomly sampled hash function from the family is negligible.

194 Tight Multi-User Security Bound of DbHtS

a single unknown randomly sampled key. Such a model is known as the single-user
security model, i.e. when the adversary interacts with one specific machine in which the
cryptographic algorithm is deployed and tries to compromise its security. However, in
practice, cryptographic algorithms are usually deployed in more than one machine. For
example, AES-GCM [MV04, M.D07] is now widely used in the TLS protocol to protect
web traffic and is currently used by billions of users daily. Thus, the security of DbHtS
constructions in the multi-key setting is worth investigating; in other words, we ask to
what extent the number of users will affect the security of DbHtS constructions, where
adversaries are successful if they compromise the security of one out of many users. That
means the adversary’s winning condition is a disjunction of single-key winning conditions.

The notion of multi-user (mu) security was introduced by Biham [Bih02] in symmetric
cryptanalysis and by Bellare, Boldyreva, and Micali [BBM00] in the context of public-key
encryption. In the multi-user setting, attackers have access to multiple machines such
that a particular cryptographic algorithm F is deployed in each machine with independent
secret keys. An attacker can adaptively distribute its queries across multiple machines with
independent keys. Multi-user security considers attackers that succeed in compromising
the security of at least one machine, among others.

Multi-user security for block ciphers is different from multi-user security for modes. In
the single-key setting, the best attacks against block cipher such as AES do not improve
with increased data complexity. However, in the multi-key environment, they do, as first
observed by Biham [Bih02] and later refined as a time-memory-data trade-off by Biryukov
et al. [BMS05]. These results demonstrate how one can take advantage of the fact that
recovering a block cipher key out of a large group of keys is much easier than targeting
a specific key. The same observation can be applied to any deterministic symmetric-key
algorithm, as done for MACs by Chatterjee et al.[CMS11]. A more general result guarantees
that the multi-user advantage of an adversary for a cryptographic algorithm is at most u
times its single user advantage. Therefore, for any cryptographic algorithm, a multi-user
security bound involving a factor u is easily established using a hybrid argument that shows
the upper bound of the adversarial success probability to be roughly u times its single-user
security advantage. Bellare and Tackmann [BT16a] first formalized a multi-user secure
authenticated encryption scheme and also analyzed countermeasures against multi-key
attacks in the context of TLS 1.3. However, they derived a security bound that also
contained the factor u. Such a bound implies a significant security drop of the construction
when the number of users is large, and in fact, this is precisely the situation faced in
large-scale deployments of AES-GCM such as TLS.

As evident from [BKR98, BT16a, BHT18, HT16, HT17, LMP17, ML15], it is a challenging
problem to study the security degradation of cryptographic primitives with the number
of users, even when its security is known in the single-user setting. Studies of multi-user
security of MACs are somewhat scarce in the literature except for the work of Chatterjee et
al. [CMS11], and a very recent work of Morgan et al. [MPS20], and Bellare et al. [BT16b].
The first two consider a generic reduction for MACs, in which the security of the primitive
in the multi-user setting is derived by multiplying the number of users u by the single-user
security.

In CRYPTO’21, Shen et al. [SWGW21] have analyzed the security of DbHtS in the multi-
user setting. It is worth noting here that by applying the generic reduction from the
single-user to the multi-user setting, the security bound of DbHtS would have capped at
worse than the birthday bound, i.e. uq4/3/2n, when each user made a single query and the
number of users reached q. Thus, a direct analysis was needed for deriving the multi-user
bound of the construction. Shen et al. [SWGW21] have shown that in the multi-user

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 195

setting, the two-keyed 3 DbHtS paradigm,

Two-Keyed-DbHtS(M) ∆= EK(HKh,1(M))⊕ EK(HKh,2(M)),

is secure up to 22n/3 queries in the ideal-cipher model when the 2n-bit double-block hash
function is the concatenation of two independent n-bit keyed hash functions HKh,1 and
HKh,2. In particular, they have shown that if both HKh,1 and HKh,2 are O(2−n)-regular
and O(2−n)-universal 4, then the multi-user security bound of the two-keyed DbHtS is of
the order of

qpℓ

2k+n
+ q3

22n
+ q2p + qp2

22k
,

where q is the total number of MAC queries across all u users, p is the total number of
ideal-cipher queries, ℓ is the maximum number of message blocks among all queries and
n, k are the block size and the key size of the block cipher respectively. Note that the
above bound is independent of the number of users u, which can be adaptively chosen by
the adversary and grows as large as q. Besides this result, Shen et al. have also shown that
2K-SUM-ECBC [DDNP18], 2K-PMAC_Plus [DDNP18] and 2K-LightMAC_Plus [DDNP18]
are all secure roughly up to 22n/3 queries (including all MAC and ideal-cipher queries) in
the multi-user setting independent of the number of users, where these constructions do
not employ domain separation techniques.
Remark 1. In their paper [DDNP18], Datta et al. named the two-keyed variants of
SUM-ECBC, PMAC_Plus and LightMAC_Plus as 2K-SUM-ECBC, 2K-PMAC_Plus and
2K-LightMAC_Plus respectively, where for each of these constructions, the domain separa-
tion technique ensured disjointness of the set of values of Σ and Θ. However, in [SWGW21],
Shen et al. considered the same constructions but without any domain separation, and
refer to them using the same names. Henceforth, we shall implicitly mean the non
domain-separated variants only (unless otherwise stated) when referring to the two-keyed
constructions 2K-SUM-ECBC, 2K-PMAC_Plus and 2K-LightMAC_Plus.

1.1 Issue with the CRYPTO’21 Paper [SWGW21]
In this section, we discuss three issues with [SWGW21]. The first two issues examine flaws
in the security analysis of the construction and the last issue points out a flawed security
claim of the construction. We begin by identifying the first issue.
1. The Two-Keyed-DbHtS framework was proven to be multi-user secure up to 22n/3 queries
in the ideal-cipher model [SWGW21] under the assumption that each of the underlying n-
bit independent keyed hash functions is O(2−n)-universal and regular. As an instantiation
of the framework, authors have proven 2n/3-bit multi-user security of 2K-SUM-ECBC,
2K-LightMAC_Plus and 2K-PMAC_Plus in the ideal-cipher model, where the underlying
DbH function of the each of the above three constructions is based on block ciphers. In the
security proof of these instantiated constructions, authors have bounded the regular and the
universal advantages of their corresponding DbH functions (i.e., the DbH of 2K-SUM-ECBC,
2K-LightMAC_Plus and 2K-PMAC_Plus) up to O(ℓ/2n), where ℓ is the maximum number
of message blocks among all queries.
Now, one of the natural assumptions in the PRF-security proof of block cipher based DbHtS
constructions in the ideal-cipher model is that the adversary should be allowed to query to
the underlying block cipher used in the DbH function of the DbHtS construction. However,
in [SWGW21], authors have proved the security of 2K-SUM-ECBC, 2K-LightMAC_Plus

3two-keyed stands for one hash key and one block cipher key.
4A family of keyed hash function is said to be ϵ1-regular if for any x and y, the probability that a

randomly sampled hash function from the family maps x to y is ϵ1; it is said to be ϵ2-universal if for any
distinct x, x′, the probability that a randomly sampled hash function from the family yields a collision on
the pair (x, x′) is ϵ2.

196 Tight Multi-User Security Bound of DbHtS

and 2K-PMAC_Plus constructions without considering this assumption. In particular, they
derived bounds of the regular and universal advantages of the underlying double block
hash functions of 2K-SUM-ECBC, 2K-LightMAC_Plus and 2K-PMAC_Plus in the setting
where the adversary did not make any primitive query to the underlying block ciphers of
the corresponding hash function. This is different from the fact that one shows a bound on
the regular and universal advantage of a double block hash function with the assumption
that an adversary is allowed to make primitive queries to the underlying block cipher
of the double block hash function. This is because, the definition of the conventional
universal (resp. regular) advantage of a keyed hash function is that no computationally
bounded adversary, without knowing the hash key, can output a pair of messages (resp. a
message M and an arbitrary value Y from the range of the hash function) such that their
hash value collides (resp. such that the hash function maps M to the designated value Y)
except with small probability. On the other hand, the definition of the universal (resp.
regular) advantage of a block cipher based keyed hash function in the ideal-ciphr model is
the following

Regular Advantage: Pr[(M, Y)← AE,E−1
, Kh←$Kh : HE

Kh
(M) = Y] ≤ ϵ

Universal Advantage: Pr[(M, M ′)← AE,E−1
, Kh←$Kh : HE

Kh
(M) = HE

Kh
(M ′)] ≤ ϵ,

where E is the underlying block cipher of the block cipher based keyed hash function
HE. The above definition of regular advantage (resp. universal advantage) says that after
the adversary interacts with the block cipher E, E−1 with some chosen keys, commits to
(M, Y) (resp. commits to a pair of message (M, M ′)) such that the probability that the
hash function maps M to Y is small (resp. probability that the hash value for M, M ′

collides is small). To illustrate the flaw in the analysis of [SWGW21], considering the
example of 2K-LightMAC_Plus, while bounding the probability of the event Σi = Σj

(where Σi = Σj ⇒ Y i
1 ⊕ Y i

2 ⊕ . . .⊕ Y i
ℓi

= Y j
1 ⊕ Y j

2 ⊕ . . .⊕ Y j
ℓj

and Y i
a = EK(M i

a∥⟨a⟩s)), the
authors have simply assumed that at least one of variables Y in the above equation will
be fresh, thus providing sufficient entropy for bounding the event. However, the authors
have missed the fact that existence of such a variable Y may not always be guaranteed
in the ideal-cipher model. For example, suppose an adversary makes the following three
forward primitive queries with a chosen ideal-cipher key J :

1. forward query with (x∥⟨1⟩s) and obtains y1

2. forward query with (x′∥⟨1⟩s) and obtains y2

3. forward query with (x′′∥⟨2⟩s) and obtains y3

Let us assume that the (albeit probabilistic) event y1 ⊕ y2 ⊕ y3 = 0 occurs. Suppose the
adversary makes two more construction queries: the first construction query with (x) and
the second, a construction query with (x′∥x′′). Then, if the block cipher key K used in the
construction collides with the chosen ideal-cipher key J , then one cannot find any fresh
variable Y in the following equations:

Y 1
1 = Y 2

1 ⊕ Y 2
2 .

Therefore, to prove the security of such block cipher-based DbHtS constructions in the
ideal-cipher model, one needs to consider the fact that the regular or universal advantage
of the underlying double block hash functions must be bounded under the assumption that
the adversary makes primitive queries to the underlying block cipher. We therefore believe
that to prove the security of the constructions in the ideal-cipher model for the block
cipher-based DbH function, one needs to provide a generalized definition of the universal
and regular advantages in the ideal-cipher model and prove their security under this model,
which was missing in [SWGW21].

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 197

2. The second issue is regarding the good transcript analysis of the Two-Keyed-DbHtS
construction. In Fig. 4 of [SWGW21], the authors have first identified the following set:

F (J) := {(i, a) ∈ [u]× [qi] such that Σi
a, Θi

a are fresh},

where Σi
a, Θi

a fresh means that Σi
a /∈ {Σi

b, Θi
b, b ≠ a ∈ [qi]} and Θi

a /∈ {Σi
b, Θi

b, b ≠ a ∈ [qi]}.
Moreover, Σi

a, Θi
a do not collide with the input of any forward ideal cipher queries such

that the chosen ideal cipher key of that forward query collides with the i-th user key. They
have also defined a set S(J),

S(J) := {(W i
a, Xi

a) ∈ ({0, 1}n \ Ran(Φj))(2|F (J)|) : W i
a ⊕Xi

a = T i
a},

where |Ran(Φj)| ≥ 1. Then for all (i, a) ∈ F (J), (W i
a, Xi

a) is sampled from S(J) and is set
as the permutation output of Σi

a and Θi
a, respectively, i.e., P(Σi

a) ← W i
a, P(Θi

a) ← Xi
a.

Note that such an assigment is sound and satisfies P(Σi
a)⊕P(Θi

a) = T i
a for all (i, a) ∈ F (J).

Finally, they have provided a lower bound on the cardinality of the set S(J) using Lemma 2,
where Lemma 2 provides the following lower bound

∆ := 2n(2n − 1) . . . (2n − 2q + 1)
2nq

·
(

1− 6q3

22n

)
on the cardinality of the set

S := {(Ui, Vi) ∈ ({0, 1}n)(2q) : Ui ⊕ Vi = Ti}.

Finally, authors have used ∆ as a lower bound on |S(J)|, reveals a fallacy as the two sets
S and S(J) are not of same size.
3. The third issue is regarding the flawed security claim of the Two-Keyed-DbHtS con-
struction in [SWGW21]. In Theorem 1 of [SWGW21], Shen et al. have shown that when
the underlying double block hash function of the Two-Keyed-DbHtS construction is the
concatenation of two independent n-bit keyed hash functions such that each of them
is O(2−n)-universal and O(2−n)-regular, Two-Keyed-DbHtS achieves 2n/3-bit multi-user
security in the ideal-cipher model. This claim has been falsified in a recent work by Guo
and Wang [GW22], where the authors came up with three concrete double-block hash
functions, each of the which is the concatenation of two independent n-bit keyed hash
functions and each of the n-bit keyed hash functions meets O(2−n)-universal and O(2−n)-
regular advantages. However, plugging-in these hash functions into the Two-Keyed-DbHtS
framework yields a birthday bound distinguishing attack. As a consequence, the security
bound of the Two-Keyed-DbHtS construction, as proven in Theorem 1 of [SWGW21], stands
flawed. We would like to mention here that the attack holds only for those instances of
Two-Keyed-DbHtS construction where the underlying DbH function is the concatenation of
two independent n-bit hash functions and it does not have any domain separation. In fact,
authors of [GW22] were not able to show any birthday bound attack on 2K-PMAC_Plus
and 2K-LightMAC_Plus as the underlying DbH function of these two constructions are not
merely the concatenation of two independent n-bit keyed hash functions. However, it is to
be noted that as the double block hash function for 2K-SUM-ECBC is the concatenation
of two independent n-bit CBC functions, the attack of [GW22] holds for it.

1.2 Our Contribution
In this paper we prove that the Two-Keyed-DbHtS construction is multi-user secure up
to 23n/4 queries in the ideal-cipher model 5. To prove it, we first define the notion of

5This specific security model has been chosen as this paper is the follow-up work of [SWGW21], where
Shen et al. have analyzed the multi-user security of DbHtS in the ideal-cipher model.

198 Tight Multi-User Security Bound of DbHtS

a good double-block hash function, which informally means that the concatenation of
two independent n-bit keyed hash functions is “good” if each has negligible universal and
regular advantages, and there is no cross-collision, i.e., the probability that the outputs
of two hash function colliding for any pair of messages M, M ′ is zero. We prove that if
the underlying 2n-bit DbH function of the Two-Keyed-DbHtS construction is good, such
that each of the n-bit keyed hash functions is ϵreg-regular and ϵuniv-universal, then the
multi-user security of our construction in the ideal-cipher model is of the order, assuming
q4/3 ≤ 2n, p ≤ 23k/4, k ≥ n,

9q4/3

2n
+ 2u2

2kh+k
+ 2(q + p)

2k
+ 5q4/3ϵuniv + q2ϵ2

univ
2 + 2qϵreg

2k
(q + p) + 2pq

2n+k
+ pq1/3

2k
+ pq5/3

2n+k
,

where q is the total number of MAC queries across all u users, p is the total number of
ideal-cipher queries, n is the block size of the block cipher, kh is the size of the hash key
and k is the key size of the block cipher of the construction. As an instantiation of the
Two-Keyed-DbHtS framework, we have proved that C2[PH-DbH, E], the Polyhash-based
Two-Keyed-DbHtS construction which was proposed in [DDNP18] and proven to be secure
up to 22n/3 queries in the single-user setting, is multi-user secure up to 23n/4 queries in
the ideal-cipher model. The security proof of the construction crucially depends on a
refined result of mirror theory over an abelian group ({0, 1}n,⊕), where one systematically
estimates the number of solutions to a system of equations to prove the security of the
finalization function of the construction up to 23n/4 queries. Due to the attack result of
Leurent et al. [LNS18] on the DbHtS paradigm with 23n/4 queries, the multi-user security
bound of our construction is tight.

How this paper departs from [SWGW21]. Our work departs from the result of Shen et
al. [SWGW21] in two aspects: (i) Unlike the result shown in [GW22], the birthday bound
attack of [GW22] is not valid for our choice of double block hash function by the virtue
of the definition of the good double block hash function. (ii) Unlike [SWGW21] where
the DbH function of the Two-Keyed-DbHtS was instantiated with block cipher based DbH
function, we have instantiated the construction with an algebraic type double block hash
function. The merit of our choice of instantiation follows from the fact that the design of
algebraic type DbH function does not require any block cipher and hence the adversary
can get away with ideal cipher queries to the DbH function while bounding its regular and
universal advantage.

Organization. We have developed the required notations and security definitions of
cryptographic primitives in Sect. 2. We demonstrate the construction and present its
security bound in Sect. 3 and in Sect. 4, we prove the security of the construction. We
instantiate the framework along with its security result in Sect. 5.

2 Preliminaries
General Notations. For a positive integer q, [q] denotes the set {1, . . . q}, and for two
natural numbers q1, q2 such that q2 > q1, [q1, q2] denotes the set {q1, . . . , q2}. For a fixed
positive integer n, we write {0, 1}n to denote the set of all binary strings of length n and
{0, 1}∗ = ∪i≥0{0, 1}i to denote the set of all binary strings with arbitrary finite length.
We refer to the elements of {0, 1}n as blocks. For a pair of blocks x = (xℓ, xr) ∈ {0, 1}2n,
we write left(x) to denote xℓ and right(x) to denote xr. For any element x ∈ {0, 1}∗, |x|
denotes the number of bits in x and for x, y ∈ {0, 1}∗, x∥y denotes the concatenation
of x followed by y. We denote the bitwise xor operation of x, y ∈ {0, 1}n by x ⊕ y. We
parse x ∈ {0, 1}∗ as x = x1∥x2∥ . . . ∥xl, where for each i = 1, . . . , l − 1, xi is a block and

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 199

1 ≤ |xl| ≤ n. For x ∈ {0, 1}n, where x = xn−1∥ . . . ∥x0, lsb(x) denotes the least significant
bit x0 of x. For a given bit b, fixb is a function from {0, 1}n to {0, 1}n that takes an n-bit
binary string x = xn−1∥ . . . ∥x0 and returns an another binary string x′ = (xn−1∥ . . . ∥b),
where lsb(x) is fixed to bit b. Given a tuple x̃ = (x1, x2, . . . , xq) of n-bit binary strings, an
element xi of the tuple x̃ is said to be non-fresh, if there exists at least one j ̸= i such that
xi = xj . Otherwise, we call that element xi is fresh.
Given a finite set S and a random variable X, we write X ←$S to denote that X is sampled
uniformly at random from S. We say that X1, X2, . . . , Xq are sampled with replacement
(wr) from S, which we denote as X1, X2, . . . Xq ←$S, if for each i ∈ [q], Xi←$S. We
also use this notation to denote that these random variables are sampled uniformly and
independently from S. For a finite subset S of N, max S denotes the maximum-valued
element of S. ∅ denotes the empty set. We write S ← ∅ to denote that S is defined to
be an empty set. We also use the same notation Φ← ∅ to denote that the function Φ is
undefined at every point of its domain. Moreover, the notation Y ← X is used to denote
the assigment of variable X to Y .
The set of all functions from X to Y is denoted by Func(X ,Y). Similarly, the set of all
permutations over X is represented by Perm(X). When X = {0, 1}n, then we write Perm(X)
as Perm. A function Φ is said to be a block function if it maps elements from an arbitrary
domain to {0, 1}n. The set of all block functions with domain X is denoted as Func(X). 6

We call Φ to be a double-block function if it maps elements from an arbitrary set X to
({0, 1}n)2. For a given double-block function Φ : X → {0, 1}2n, we write Φℓ : X → {0, 1}n

such that for every x ∈ X , Φℓ(x) = left(Φ(x)). Similarly, we write Φr : X → {0, 1}n such
that for every x ∈ X , Φr(x) = right(Φ(x)). For two block functions Φℓ : X → {0, 1}n

and Φr : X → {0, 1}n, one can naturally define a double-block function Φ : X → {0, 1}2n

such that Φ(x) = (Φℓ(x), Φr(x)), which we write as Φ = (Φℓ, Φr). For a finite set X and
an integer q, we write X (q) to denote the set {(x1, x2, . . . , xq) : xi ∈ X , xi ≠ xj}. For
integers 1 ≤ b ≤ a, we write P(a, b) to denote a(a− 1) . . . (a− b + 1), where P(a, 0) = 1 by
convention. Therefore, |X (q)| = P(|X |, q).

2.1 Distinguishing Advantage
An adversary A is modeled as a randomized algorithm with access to an external oracle O.
Such an adversary is called an oracle adversary. An oracle O is an algorithm that may
be a cryptographic scheme being analyzed. The interaction between A and O, denoted
by AO, generates a transcript τ = {(x1, y1), (x2, y2), . . . , (xq, yq)}, where x1, x2, . . . , xq

are q queries of A to oracle O and y1, y2, . . . , yq be the corresponding responses, where
yi = O(xi). We assume that A is adaptive, which means that xi is dependent on the
previous i− 1 responses.

Distinguishing Game. Let F and G be two random systems and an adversary A is given
oracle access to either of F or G. After interaction with an oracle O ∈ {F, G}, A outputs 1,
which is denoted as AO ⇒ 1. Such an adversary is called a distinguisher and the game is
called a distinguishing game. The task of the distinguisher in a distinguishing game is to
tell with which of the two systems it has interacted. The advantage of the distinguisher A
in distinguishing the random system F from G is defined as

AdvF
G(A) ∆= | Pr[AF ⇒ 1]− Pr[AG ⇒ 1] |,

where the above probability is defined over the probability spaces of A and O. One can
easily generalize this setting when the distinguisher interacts with multiple oracles, which

6When X = {0, 1}n, we write Func to denote Func({0, 1}n).

200 Tight Multi-User Security Bound of DbHtS

are separated by commas. For example, AdvF1,...,Fm

G1,...,Gm
(A) denotes the advantage of A in

distinguishing the oracles (F1, . . . , Fm) from the oracles (G1, . . . , Gm), i.e.,

AdvF1,...,Fm

G1,...,Gm
(A) ∆= | Pr[AF1,...,Fm ⇒ 1]− Pr[AG1,...,Gm ⇒ 1] |,

where the above probability is defined over the probability spaces of A and the oracle
O ∈ {(F1, . . . , Fm), (G1, . . . , Gm)}.

2.2 Block Cipher
A block cipher E : K× {0, 1}n → {0, 1}n is a function that takes a key k ∈ K and an n-bit
input data x ∈ {0, 1}n and produces an n-bit output y such that for each key k ∈ K, E(k, ·)
is a permutation over {0, 1}n. K is called the key space of the block cipher and {0, 1}n is
its input-output space. In shorthand notation, we write Ek(x) to represent E(k, x). Let
BC(K, {0, 1}n) denote the set of all n-bit block ciphers with key space K. We say that a
block cipher E is an (q, ϵ, t)-secure strong pseudorandom permutation (SPRP), if for all
distinguishers A that make a total of q queries to its oracles with run time at most t, the
following holds:

AdvSPRP
E (A) ∆= AdvEK ,E−1

K

Π,Π−1 (A) ≤ ϵ,

where the probability is defined over K ←$K, Π←$ Perm, and the randomness of the
adversary A (if any).

2.3 PRF Security in the Ideal-Cipher Model
A keyed function family with the key space K, domain X and range Y is a function
F : K × X → Y. We denote F(k, x) by Fk(x). A random function RF from X to Y is a
uniform random variable over the set Func(X ,Y), i.e., RF←$ Func(X ,Y). We define the
pseudorandom security of F under the ideal-cipher model. We assume that F makes internal
calls to a publicly evaluated block cipher E with more than one key. Typically, F would be
keyed with some key K and derive block cipher keys K1, K2, . . . , Km as a function of K
and other inputs (F can make internal calls to multiple block ciphers when all of them are
independently and uniformly distributed over the set BC(K, {0, 1}n)). For simplicity, we
write FE

K to denote F with a uniformly sampled block cipher E←$ BC(K, {0, 1}n), which is
keyed by a randomly sampled key K ←$K. The distinguisher A is given access to either
(FE

K , E±) for K ←$K or (RF, E±) for RF←$ Func(X ,Y), where E←$ BC(K, {0, 1}n) is a
uniformly sampled n-bit block cipher such that A can make forward or inverse queries to
E, which is denoted as E±. We define the prf-advantage of A against the keyed function
family F in the ideal cipher model as

AdvPRF-ICM
F (A) ∆= Adv(FE

K ,E±)
(RF,E±) (A), (1)

for K ←$K, RF←$ Func(X ,Y), E←$ BC(K, {0, 1}n) and the randomness of the adversary A
(if any). We say that F is a (q, p, ϵ, t)-PRF in the ideal cipher model if AdvPRF-ICM

F (A) ≤ ϵ
for all adversaries A that make q queries to F, p forward and inverse offline queries to E
and run for time at most t.

2.4 Multi-User PRF Security in the Ideal-Cipher Model
We assume there are u users in the multi-user setting, such that the i-th user executes
FE

Ki
. Furthermore, the i-th user key Ki is independent of the keys of all other users. An

adversary A has access to all the u users as oracles. A make queries to the oracles in the
form of (i, M) to the i-th user and obtains T ← FE

Ki
(M). We call these construction

queries. For i ∈ [u], we assume A makes qi queries to the i-th oracle, where we assume that

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 201

A is the deterministic adversary that achieves the maximum distinguishing advantage and
we bound the distinguishing advantage of our construction with respect to this adversary 7.
We also assume that A make queries to the underlying block cipher E and its inverse with
some chosen keys kj . We call these primitive queries. Suppose A chooses s distinct
block cipher keys (k1, . . . , ks) and makes pj primitive queries to the block cipher E with
chosen keys kj for 1 ≤ j ≤ s. We call A to be a (u, q, p, t)-adversary against the multi-user
PRF security of F in the ideal cipher model, where q = q1 + . . . + qu is the total number
of construction queries across all u users and p = p1 + . . . + ps is the total number of
primitive queries to the block cipher E with the total running time of A being at most
t. We assume that for any i ∈ [u], A does not repeat any construction query to the i-th
user. Similarly, A does not repeat any primitive query for any chosen block cipher key kj

to the block cipher E. The advantage of A in distinguishing (FE
K1

, FE
K2

, . . . , FE
Ku

, E±) from
(RF1, RF2, . . . , RFu, E±) in the multi-user seting, is defined as

AdvmuPRF-ICM
F (A) ∆= Adv

((FE
K1 ,...,FE

Ku
),E±)

((RF1,...,RFu),E±) (A),

for the u tuple of independently sampled keys K1, . . . , Ku←$K, u independently sam-
pled random functions RF1, RF2, . . . , RFu←$ Func(X ,Y), a randomly chosen block cipher
E←$ BC(K, {0, 1}n) from the set of all block ciphers with k-bit key and n-bit input, and
the randomness of the adversary (if any). We write

AdvmuPRF-ICM
F (u, q, p, t) ∆= max

A
AdvmuPRF-ICM

F (A),

where the maximum is over all (u, q, p, t)-adversaries A. In this paper, we skip the time
parameter of the adversary as we shall assume that the adversary is computationally
unbounded. This also leads to the assumption that the adversary is deterministic. When
u = 1, AdvmuPRF-ICM

F (1, q, p, t) boils down to the PRF distinguishing advantage of the
keyed function family F in the ideal-cipher model as defined in Eqn. (1).

2.5 Security of a Keyed Hash Function
Let Kh and X be two non-empty finite sets. A keyed function H : Kh × X → {0, 1}n is
ϵaxu-almost-xor universal (axu) if for any distinct x, x′ ∈ X and for any ∆ ∈ {0, 1}n,

Pr[Kh←$Kh : HKh
(x)⊕ HKh

(x′) = ∆] ≤ ϵaxu.

Moreover, H is an ϵuniv-universal hash function if for any distinct x, x′ ∈ X ,

Pr[Kh←$Kh : HKh
(x) = HKh

(x′)] ≤ ϵuniv.

A keyed hash function is said to be ϵreg-regular if for any x ∈ X and for any ∆ ∈ {0, 1}n,

Pr[Kh←$Kh : HKh
(x) = ∆] ≤ ϵreg.

Remark 2. We would like to note here that the above two definitions of keyed hash
functions are defined in the standard model, in which there is no need of any interaction
with the adversary. However, the above two definitions would require the involvement of
the adversary, if the keyed hash functions are build on the top of block ciphers and the
security is analyzed in the ideal-cipher model.

7In more details, the number of queries A makes for each user might not be fixed and might vary for
each transcript. Hence, all the probability calculations should have been carried out by conditioning on qi

such that q1 + . . . + qu ≤ q, where qi is a random variable that depends on the choice of the adaptive
adversary. However, the conditional probability yields qi free term and hence the unconditional probability
will also be free from qi. Nevertheless, such a detailed analysis is usually suppressed in almost every other
research works in this direction.

202 Tight Multi-User Security Bound of DbHtS

2.6 Mirror Theory
Mirror theory is a collection of combinatorial results that give a lower bound on the number
of solutions to a system of bivariate affine equations E over an abelian group ({0, 1}n,⊕).
We represent a system of equations by a simple graph G = (V, E) containing no loops
or multiple edges, where each vertex denotes an n-bit unknown (for a fixed n), and we
connect vertices P and Q with an edge labeled λ ∈ {0, 1}n if P ⊕Q = λ ∈ E . For a path
L = P1

λ1−→ P2
λ2−→ . . .

λℓ−→ Pℓ in the graph G, we define the label of the path

λ(L) = λ1 ⊕ λ2 ⊕ . . .⊕ λℓ.

In this work, we focus on a graph G = (V, E) with certain properties as listed below:

1. G contains no isolated vertex, i.e., every vertex is incident with at least one edge.

2. The vertex set V is partitioned into two disjoint sets denoted by P and Q, where
there are no edges within the vertex set in partition P or in partition Q. All edges
connect a vertex in P to a vertex in Q. We call such graphs bipartition graphs.

3. G contains no cycle.

4. λ(L) ̸= 0n for any path L in G.

Any bipartition graph G satisfying the above properties shall be called a good graph.
Note that a good bipartition graph G contains no cycle. Therefore, G can be decomposed
into its connected components, all of which are trees; let

G = C1 ⊔ C2 ⊔ . . . ⊔ Cα ⊔ D1 ⊔ D2 ⊔ . . . ⊔ Dβ

for some α, β ≥ 0, where Ci denotes a component of size greater than 2, and Di denotes
a componenent size of 2. We write C = C1 ⊔ C2 ⊔ . . . ⊔ Cα and D = D1 ⊔ D2 ⊔ . . . ⊔ Dβ .
For a given good bipartite graph, we define an associated system of bivariate equations
as follows: each vertices of the graph represents a variable in the associated system of
equations. If there is an edge {Pi, Qi} ∈ E with label being λij , then we include the
equation Pi ⊕Qj = λij into the associated system of equations.

Definition 1. Let EG be a system of equations induced by a good biparite graph G.
An injective function Φ : P ⊔ Q → {0, 1}n is said to be an injective solution to EG if
Φ(Pi)⊕ Φ(Qj) = λij for all {Pi, Qj} ∈ E with the label of the edge {Pi, Qj} being λij .

We remark that assigning any value to a vertex in P allows the labeled edges to uniquely
determine the values of all the other vertices in the component containing P , since G
contains no cycle. Moreover, the values in the same component are all distinct as λ(L) ̸= 0n

for any path L. Let P be any path of even length ℓ, defined as follows:

P = Pi1
λ11→ Qi1

λ12→ Pi2
λ22→ Qi2

λ23→ . . .
λℓ−1,ℓ−1→ Qiℓ−1

λℓ−1,ℓ→ Piℓ
.

Without loss of generality, let us assume that the value assigned to the vertex Pis collides
with the value assigned to the vertex Pit

, where s < t. Let x be the value assigned to the
vertex Pis

. Then, the value assigned to the vertex Pit
is

∆ ∆= x⊕ λs,s ⊕ λs,s+1 ⊕ . . .⊕ λt−1,t.

By our assumption we have ∆ = x, which implies

λs,s ⊕ λs,s+1 ⊕ . . .⊕ λt−1,t = 0n,

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 203

that contradicts to fact that the label of the path

L(Pis
→ Qis

→ Pis+1 → Qis+1 → . . .→ Qit−1 → Pit
) ̸= 0n.

Hence, it ensures that once a value is assigned to a vertex in a component, the values
assigned to all the other vertices of the same component are distinct. Therefore, the number
of possible assignments of distinct values to the vertices in G is P(2n, |P|+ |Q|). One may
expect that when such an assignment is chosen uniformly at random, it would satisfy all the
equations in G with probability 2−nq, where q denotes the number of edges (i.e., equations)
in G. Indeed, we can prove that the number of solutions is close to P(2n, |P|+ |Q|)/2nq,
up to a certain error. Formally, we have the following result:

Lemma 1. Let G be a good bipartition graph, and let q and qc denote the number of edges
of G and C, respectively. Let v be the number of vertices of G. If q < 2n/8, then the number
of solutions to G, denoted h(G), satisfies

h(G)2nq

P(2n, v) ≥
(

1− 9(qc)2

8 · 2n
− 3qcq2

2 · 22n
− q2

22n
− 9(qc)2q

8 · 22n
− 8q4

3 · 23n

)
.

We refer the reader to [KLL20] for a proof of the lemma.

3 The Two-Keyed DbHtS Construction
In this section, we describe the Two-Keyed Double-block Hash-then-Sum or in short,
Two-Keyed-DbHtS construction to build a beyond birthday bound secure variable input
length PRF. Let H1 : Kh×{0, 1}∗ → {0, 1}n and H2 : Kh×{0, 1}∗ → {0, 1}n be two keyed
hash functions. Based on H1 and H2, we define the Double-block Hash or in short DbH
function H : Kh ×Kh × {0, 1}∗ → {0, 1}2n as follows:

H(L1,L2)(M) = (H1
L1

(M), H2
L2

(M)). (2)

We compose this DbH function with a very simple and efficient single-keyed xor function
XORK(x, y) = EK(x)⊕ EK(y), where EK is an n-bit block cipher and the block cipher key
K is independent from the hash key (L1, L2), to realize the two-Keyed-DbHtS construction
as follows:

C2[H, E](L1,L2,K)(M) := XORK(H1
L1

(M), H2
L2

(M)).

We use the name Two-Keyed-DbHtS construction, as we count the hash key as one key and
the xor function requiring one key, which is independent of the hash key. Most of the beyond
birthday bound secure variable input length PRFs like 2K-SUM-ECBC, 2K-PMAC_Plus,
2K-LightMAC_Plus are specific instantiations of the Two-Keyed-DbHtS paradigm. These
constructions (with domain separation technique) have been proven secured up to 22n/3

queries in the standard model [DDNP18] for a single-user setting. Later, in [KLL20], Kim
et al. have improved their bound up to 23n/4 queries. In [SWGW21], all these three
constructions (without domain separation technique) have been proven secured up to 22n/3

queries in the ideal-cipher model for a multi-user setting. We note here that as the xor
function is not a PRF over two blocks, we can not apply the traditional Hash-then-PRF
composition result directly to analyze the security of the two-keyed DbHtS. Thus, we need
a different type of composition result for the security analysis of the Two-Keyed-DbHtS
construction that utilizes higher security properties of its underlying DbH function instead
of having only the universal or regular property.

Definition 2. Let H1 : Kh×{0, 1}∗ → {0, 1}n and H2 : Kh×{0, 1}∗ → {0, 1}n be two n-bit
keyed hash functions. We say that the double-block hash function H : Kh×Kh×{0, 1}∗ →
{0, 1}2n defined in Eqn. (2) is good if it satisfies the following conditions:

204 Tight Multi-User Security Bound of DbHtS

• H1 is a family of ϵreg-regular and ϵuniv-universal functions.

• H2 is a family of ϵreg-regular and ϵuniv-universal functions.

• H is cross-collision resistant, i.e., for every M, M ′ ∈ {0, 1}∗, Pr[L1←$Kh, L2←$Kh :
H1

L1
(M) = H2

L2
(M ′)] = 0.

The first two conditions imply that the regular and universal advantages of both the
hash functions should be negligible, whereas the last condition indicates that the first
hash output for any message cannot collide with the second hash output. Having defined
the Two-Keyed-DbHtS construction, we now state and prove its security. For the sake
of brevity, we refer to the Two-Keyed-DbHtS construction C2[H, E](L1,L2,K) by simply C2
without mentioning the underlying hash function, the block cipher and their associated
keys.

Theorem 1. Let k, kh and n be three positive integers and M be a non-empty finite set.
Let E : {0, 1}k × {0, 1}n → {0, 1}n be an n-bit block cipher. Let H : {0, 1}kh × {0, 1}kh ×
{0, 1}∗ → {0, 1}2n be a good double-block hash function as defined in Eqn. (2). Then any
computationally unbounded distinguisher making a total of q construction queries across
all u users 8 and a total of p primitive queries to the block cipher E can distinguish C2
from an n-bit uniform random function with prf advantage

AdvmuPRF-ICM
C2

(u, q, p, ℓ) ≤ q + q2ϵuniv

2n
+ 9q4/3

8 · 22n
+ 3q8/3

2 · 22n
+ q2

2 · 22n
+ 9q7/3

8 · 22n
+ 8q4

3 · 23n

+ 2pq

2n+k
+ pq1/3

2k
+ pq5/3

2n+k
+ 2qpϵreg

2k
+ 2u2

2k+kh
+ 2q2ϵreg

2kh

+6q4/3ϵuniv

2 + q2ϵ2
univ
2 .

By assuming q4/3 ≤ 2n, p ≤ 23k/4, and k ≥ n, we have:

AdvmuPRF-ICM
C2

(u, q, p, ℓ) ≤ 9q4/3

2n
+ 2u2

2kh+k
+ 2(q + p)

2k
+ 5q4/3ϵuniv + q2ϵ2

univ
2

+2qϵreg

2k
(q + p) + 2pq

2n+k
+ pq1/3

2k
+ pq5/3

2n+k
.

Remark 3. We would like to mention that the last condition of the definition of good hash
function, i.e. the cross-collision condition of the hash function rules out the possibility of
mounting birthday bound attacks on the Two-Keyed-DbHtS construction. As a result of
Theorem 1, the attack of Guo and Wang [GW22] does not apply.

4 Proof of Theorem 1
We consider a computationally unbounded non-trivial deterministic distinghisher A that
interacts with a pair of oracles in either the real world or the ideal world, described
as follows: in the real world, A is given access to u independent instances of the Two-
Keyed-DbHtS construction, i.e., to a tuple of u oracles (C2[H, E](Li

1,Li
2,Ki))i∈[u], where each

(Li
1, Li

2) is independent of (Lj
1, Lj

2), Ki is independent of Kj and E←$ BC(K, {0, 1}n) is an
ideal block cipher. Additionally, A has access to the oracle E±, underneath the construction
C2. In the ideal world, A is given access to (i) a tuple of u independent random functions

8We have assumed that ‘u’ to be the total number of “queried” users. The total number of available
users may be more than the number of queried users. However, the information of the set of non-queried
users are independent over the transcript and hence the presence of the set of non-queried users do not
affect the security bound of the construction.

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 205

(RF1, . . . , RFu), where each RFi is the random function over {0, 1}∗ to {0, 1}n that can be
equivalently described as a procedure that returns an n-bit uniform string on input of
any arbitrary message, and (ii) the oracle E±, where E←$ BC(K, {0, 1}n) is an ideal block
cipher, sampled independent of the distribution of the sequence of u independent random
functions. In both worlds, the first oracle is called the construction oracle and the latter,
the ideal cipher oracle. Using the ideal cipher oracle, a distinguisher A can evaluate any
query x under its chosen key J . A query to the construction oracle is called a construction
query and to that of the ideal cipher oracle is called an ideal cipher query. Note that A
can make either forward (i.e., it evaluates E with a chosen key and input), or inverse ideal
cipher queries (i.e., it evaluates E−1 with a chosen key and input). The ideal oracle is
depicted in Fig. 4.1 and Fig. 4.2.

4.1 Description of the Ideal World
The ideal world consists of two phases: (i) the online and (ii) the offline phase. Before
the game begins, we sample u independent functions f1, f2, . . . , fu uniformly at random
from the set of all functions Func({0, 1}∗, {0, 1}n) that map an arbitrary-length string to
an n-bit string. We also sample an n-bit block cipher E from the set of all block ciphers
with a k-bit key and an n-bit input. In the online phase, when the distinguisher makes
the a-th construction query for the i-th user M i

a to the construction oracle, it returns
T i

a ← fi(M i
a). Similarly, if the distinguisher makes a forward (resp. inverse) primitive

query with a chosen block cipher key J and an input x to the ideal cipher oracle, it returns
E(J, x) (resp. E−1(J, x)). However, if any response of the construction queries is an all-zero
string 0n, then the bad flag Bad-Tag is set to 1 and the game is aborted 9.

Online Phase of Oideal

1 : E←$ BC(K, {0, 1}n);
Construction Query:
2 : On a-th query of i-th user M i

a, return T i
a ←$ {0, 1}n;

3 : if ∃(i, a) : T i
a = 0 then Bad-Tag← 1 , ⊥;

Primitive Query:

4 : On α-th forward query with chosen key Jj and input uj
α, return vj

α ← EJj (uj
α);

5 : On α-th backward query with chosen key Jj and input vj
α, return uj

α ← E−1
Jj (vj

α);
6 : Dom(EJj)← Dom(EJj) ∪ {uj

α}, Ran(EJj)← Ran(EJj) ∪ {vj
α};

Figure 4.1: Online Phase of the Ideal oracle $: Boxed statements denote bad events.
Whenever a bad event is set to 1, the ideal oracle immediately aborts (denoted as ⊥) and
returns the remaining values of the transcript in an arbitrary manner. So, if the game
aborts for some bad event, then its previous bad events must not have occurred.

After this interaction is over, the offline phase begins. In this phase, we sample u pairs of
dummy hash keys (Li

1, Li
2)i∈[u]←$Kh×Kh and u dummy block cipher keys (Ki)i∈[u]←$K,

where Li
1 (resp. Li

2) is the left (resp. right) hash key for the i-th user and Ki is its block
cipher key. If the block cipher key and a left (resp. right) hash key of the i1-th user collides
with the block cipher key and left (resp. right) hash key of the i2-th user, then we set the
flag BadK to 1 and abort the game. If the game is not aborted, then we can compute a
pair of 2n-bit hash values (Σi

a, Θi
a) for all queries across u users, where we often refer to

9Defining the ideal world that aborts in H-Coefficient proofs is a standard pratice in provable security
papers including [DDNP18, SWGW21].

206 Tight Multi-User Security Bound of DbHtS

Σi
a ← H1

Li
1
(M i

a) as the left hash output and to Θi
a ← H2

Li
2
(M i

a) as the right hash output for
the a-th query of the i-th user.
Now, if the block cipher key of the i-th user and the left hash or right hash output for its
a-th query collides with some chosen ideal cipher key and one of the corresponding inputs
of the forward ideal cipher query, then we set the bad flag Bad1 to 1 and abort the game.
For the i-th user, if the left or right hash outputs for two of its queries collide and the
corresponding responses also collide with each other (i.e., Σi

a = Σi
b, T i

a = T i
b), then we

consider it to be a bad event. Similarly, for a pair of users i1 and i2, if their left or right
hash outputs collide with each other and the corresponding responses also collide with
each other, then we again consider it to be a bad event. If at least one of the above bad
events occurs, we set Bad2 to 1 and abort the game. We also set another flag Bad3 to 1
and abort the game if for the i-th user, the number of the pairs of queries whose either
left or right hash outputs collide with each other is at least q

2/3
i , where qi is the number of

queries made by the i-th user.
Finally, we set the flag Bad4 to 1 if at least one of the following events holds: (a) for the
i-th user, two left hash outputs collide and their corresponding right hash outputs also
collide, or (b) for the i-th user, there exists a tuple of four query indices a, b, c, d such that
either (i) Σi

a = Σi
b, Θi

b = Θi
c, Σi

c = Σi
d holds or (ii) Θi

a = Θi
b, Σi

b = Σi
c, Θi

c = Θi
d holds. As

the DbH function H is good, Σi
a cannot collide with Θi

b. It is also to be noted here that
as the hash function is good, i.e., the hash outputs of two hash functions never collide, it
immediately rules out the attack of [GW22].
If the game is not aborted at this stage, then it follows that none of the bad events have
occurred. All the query-response pairs belong to exactly one of the sets Q= or Q̸= as
defined in lines 1 and 11 of Fig. 4.3, where Q= is the set of all construction queries across
all users such that the block cipher key of the i-th user collides with an ideal cipher key,
but none of its hash outputs collide with any ideal cipher query, and Q̸= is the set of all
construction queries across all users such that the block cipher key of the i-th user does not
collide with any ideal cipher key. We also define two additional sets: I= and I ̸= for Q=

and Q̸=, where I= (resp. I ̸=) is the set of all i such that (i, ⋆) ∈ Q= (resp. (i, ⋆) ∈ Q̸=).
We partition I= into r non-empty equivalence classes I=

1 , I=
2 , . . . , I=

r based on the relation
that the i-th user key Ki collides with Jj if and only if i ∈ I=

j
10. It is to be noted that we

assume that the adversary has chosen a total of s distinct ideal cipher keys J1, J2, . . . , Js

during the evaluation of primitive queries and out of these s chosen keys, each of the r ≤ s
keys are collided with at least one user key. Similarly, we partition I ̸= into r′ equivalence
classes based on the equivalence relation i ∼ j if and only if Ki = Kj . Now, for the j-th
equivalence class of I=, we consider the tuple

Σ̃j :=
⋃

i∈I=
j

{(Σi
1, Σi

2, . . . , Σi
qi

)}, Θ̃j :=
⋃

i∈I=
j

{(Θi
1, Θi

2, . . . , Θi
qi

)}.

Note that due to the event in line number 7.(b) (resp. 7.(d)) of Fig. 4.2, we have Σi1
a ̸= Σi2

b

(resp. Θi1
a ̸= Θi2

b) for i1, i2 ∈ I=
j and a ∈ [qi1], b ∈ [qi2]. If Σi

a is not fresh in the tuple
(Σi

1, Σi
2, . . . , Σi

qi
) for some (i, a) ∈ I=

j × [qi] and the output of Σi
a has not been sampled

yet, then we sample its output Zi
1,a from outside the range of EJj and set the output of

Θi
a as the xor of Zi

a and T i
a (see line 6 of Fig. 4.3). Otherwise, we set the output of Σi

a

to the already defined element and adjust the output of the other hash value accordingly
(see line 7 of Fig. 4.3). Note that in the latter case, we do not sample the output. In the
above adjustment, if the output of Θi

a happens to collide with any previously sampled
10A correct way of writing step 2 of Fig. 4.3 should be I= = I=

i1
⊔ I=

i2
⊔ . . . ⊔ I=

ir
, where i1, i2, . . . , ir ∈ [s]

such that i ∈ I=
it

⇔ Ki = Jit . However, for the sake of simplicity, we assume it = t, t ∈ [r], i.e., each of
the first r many chosen ideal cipher keys have been collided with at least one user key.

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 207

Offline Phase of Oideal

1 : (Li
1, Li

2)i∈[u] ←$Kh ×Kh; (Ki)i∈[u] ←$K;
2 : if ∃b ∈ {1, 2} and i1 ̸= i2 ∈ [u] such that Ki1 = Ki2 ∧ Li1

b = Li2
b ;

3 : then BadK← 1 , ⊥;
4 : ∀i ∈ [u], ∀a ∈ [qi] : (Σi

a, Θi
a)← (H1

Li
1
(M i

a), H2
Li

2
(M i

a));
5 : if one of the following holds:

(a) (B.11) : ∃i ∈ [u], j ∈ [s], u[0]jα ∈ Dom(EJj), such that Ki = Jj ∧ Σi
a = u[0]jα;

(b) (B.12) : ∃i ∈ [u], j ∈ [s], u[1]jα ∈ Dom(EJj), such that Ki = Jj ∧ Θi
a = u[1]jα;

6 : then Bad1← 1 , ⊥;
7 : if one of the following holds:

(a) (B.21) : ∃i ∈ [u], a, b ∈ [qi], such that Σi
a = Σi

b ∧ T i
a = T i

b ;
(b) (B.22) : ∃i1, i2 ∈ [u], a ∈ [qi1], b ∈ [qi2], such that Ki1 = Ki2 ∧ Σi1

a = Σi2
b ;

(c) (B.23) : ∃i ∈ [u], a, b ∈ [qi], such that Θi1
a = Θi1

b ∧ T i1
a = T i1

b ;
(d) (B.24) : ∃i1, i2 ∈ [u], a ∈ [qi1], b ∈ [qi2], such that Ki1 = Ki2 ∧ Θi1

a = Θi2
b ;

8 : then Bad2← 1 , ⊥;
9 : if one of the following holds:

(a) (B.31) : ∃i ∈ [u], such that
∣∣{(a, b) : Σi

a = Σi
b

}∣∣ ≥ q
2/3
i ;

(b) (B.32) : ∃i ∈ [u], such that
∣∣{(a, b) : Θi

a = Θi
b

}∣∣ ≥ q
2/3
i ;

10 : then Bad3← 1 , ⊥;
11 : if one of the following holds:

(a) (B.41) : ∃i ∈ [u], a, b ∈ [qi] such that Σi
a = Σi

b ∧ Θi
a = Θi

b;
(b) (B.42) : ∃i ∈ [u], a, b, c, d ∈ [qi] such that Σi

a = Σi
b ∧ Θi

b = Θi
c ∧ Σi

c = Σi
d;

(c) (B.43) : ∃i ∈ [u], a, b, c, d ∈ [qi] such that Θi
a = Θi

b ∧ Σi
b = Σi

c ∧ Θi
c = Θi

d;
12 : then Bad4← 1 , ⊥;
13 : go to Fig. 4.3;

Figure 4.2: Offline Phase of the Ideal oracle $: Boxed statements denote bad events.
Whenever a bad event is set to 1, the ideal oracle immediately aborts (denoted as ⊥) and
returns the remaining values of the transcript in an arbitrary manner. So, if the game
aborts for some bad event, then we may assume that the previous bad events have not
occurred.

output, then we set flag Bad-Samp to 1 and abort the game (see line 8 of Fig. 4.3) and
abort the game. Note that this event cannot hold for the real oracle, as Θi

a is fresh in
(Θi

1, Θi
2, . . . , Θi

qi
) for i ∈ I=

j and a ∈ [qi]. If the above flag is not set to 1, then the sampling
for the output of Σi

a, where (i, a) ∈ Q= preserves permutation compatibility. Finally, for
all other (i, a) ∈ Q̸=, we sample Zi

1,a and Zi
2,a such that Zi

1,a ⊕ Zi
2,a = T i

a.

4.2 Attack Transcript
We summarize here, the interaction between the distinguisher and the challenger in a
transcript. The set of all construction queries for u instances are summarized in a transcript
τc = τ1

c ∪ τ2
c ∪ . . . ∪ τu

c , where τ i
c = {(M i

1, T i
1), . . . , (M i

qi
, T i

qi
)} denotes the query-response

transcript generated from the i-th instance of the construction. Moreover, we assume that

208 Tight Multi-User Security Bound of DbHtS

Offline Phase of Oideal, Sampling Phase

1 : Q= := {(i, a) ∈ [u]× [qi] : ∃j ∈ [s], Ki = Jj , Σi
a /∈ Dom(EJj), Θi

a /∈ Dom(EJj)};
2 : I= := {i ∈ [u] : (i, ⋆) ∈ Q=} = I=

1 ⊔ I=
2 ⊔ . . . ⊔ I=

r ; // i ∈ I=
j ⇔ Ki = Jj .

3 : / ∗ Note that there are s− r ideal cipher keys which have not been collided with any user key ∗ /

4 : ∀j ∈ [r] : Σ̃j =
⋃

i∈I=
j

{(Σi
1, Σi

2, . . . , Σi
qi

)}, Θ̃j =
⋃

i∈I=
j

{(Θi
1, Θi

2, . . . , Θi
qi

)};

5 : ∀j ∈ [r] do the following steps:
6 : ∀i ∈ I=

j let Σi
a be not fresh in (Σi

1, Σi
2, . . . , Σi

qi
) for some a ∈ [qi];

7 : if Σi
a /∈ Dom(EJj), then Ψj(Σi

a)← Zi
1,a ←$ {0, 1}n \ Ran(EJj), Zi

2,a ← Zi
1,a ⊕ T i

a;
8 : else Zi

1,a ← Ψj(Σi
a), Zi

2,a ← Zi
1,a ⊕ T i

a;

9 : if Zi
2,a ∈ Ran(EJj) then Bad-Samp← 1 , ⊥;

10 : else Dom(EJj)← Dom(EJj) ∪ {(Σi
a, Θi

a)}, Ran(EJj)← Ran(EJj) ∪ {(Zi
a, Zi

a ⊕ T i
a)};

11 : Set Ψj(Σi
a)← Zi

1,a, Ψj(Θi
a)← Zi

2,a, ∀i ∈ I=
j , a ∈ [qi];

12 : Q ̸= := {(i, a) ∈ [u]× [qi] : ∀j ∈ [s], Ki ̸= Jj};
13 : I ̸= := {i ∈ [u] : (i, ⋆) ∈ Q ̸=} = I ̸=

1 ⊔ I
̸=
2 ⊔ . . . ⊔ I ̸=

r′ ; // i, j ∈ I ̸=
α ⇔ Ki = Kj

14 : ∀j ∈ [r′] : fj := distinct number of elements in the tuple Σ̃j ∪ Θ̃j ;
15 : ∀j ∈ [r′] : (Zi

1,a, Zi
2,a)

i∈I ̸=
j

,a∈[qi] ←$Sj := {(Qi
a, Ri

a)
i∈I ̸=

j
,a∈[qi] ∈ ({0, 1}n)(fj) : Qi

a ⊕Ri
a = T i

a};

16 : ∀j ∈ [r′] : do the following steps:
17 : Dom(EJ)← Dom(EJ) ∪ {(Σi

a, Θi
a) : i ∈ I ̸=

j , a ∈ [qi]};

18 : Ran(EJ)← Ran(EJ) ∪ {(Zi
1,a, Zi

2,a) : i ∈ I ̸=
j , a ∈ [qi]};

19 : Set Ψj(Σi
a)← Zi

1,a, Ψj(Θi
a)← Zi

2,a, ∀i ∈ I ̸=
j , a ∈ [qi];

20 : return (Σi
a, Θi

a, Zi
1,a, Zi

2,a)(i,a)∈[u]×[qi];

Figure 4.3: Offline Phase of the Ideal oracle $, where we sample the output of the hash
values.

A has chosen s distinct ideal cipher keys J1, . . . , Js such that it makes pj ideal cipher
queries to the block cipher with the chosen key Jj . We summarize the ideal cipher queries
in a transcript τp = τ1

p ∪ τ2
p ∪ . . . ∪ τs

p , where τ j
p = {(uj

1, vj
1), . . . , (uj

pj
, vj

pj
), Jj} denotes the

transcript of the ideal cipher queries when the chosen ideal cipher key is Jj . We assume
that A makes qi construction queries for the i-th instance and pj ideal cipher queries
(including forward and inverse queries) with chosen ideal cipher key Jj . We also assume
that the total number of construction queries across u instances is q, i.e., q = (q1 + . . . + qu)
and the total number of ideal cipher queries is p = (p1 + . . . + ps). Since A is non-trivial,
none of the transcripts contain any duplicate elements.

We modify the experiment by releasing internal information to A after it has finished
its interaction but has not yet output the decision bit. In the real world, we reveal all
the keys (Li

1, Li
2, Ki) for all u instances used in the construction. In the ideal world, we

sample them uniformly at random from their respective key spaces and reveal them to the
distinguisher. We also reveal the tuple (Σi

a, Θi
a, Ψj(Σi

a), Ψj(Θi
a)) to the distinguisher A,

where i ∈ I=
j or i ∈ I ̸=

j . We note that the tuple (Σi
a, Θi

a, Ψj(Σi
a), Ψj(Θi

a)) is computed
by the challenger of both the world, where the function Ψj defined for the ideal world is

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 209

given in Fig. 4.3, and for the real world, we define Ψj as follows:

Ψj(Σi
a) = EKi(Σi

a), Ψj(Θi
a) = EKi(Θi

a),

for i ∈ I=
j or i ∈ I ̸=

j . By the virtue of the definition of the function Ψj in the real and
in the ideal world, for i ∈ I=

j and i′ ∈ I=
j′ with j ̸= j′, Σi

a = Σi′

b ⇏ Ψj(Σi
a) = Ψj′(Σi′

b).
Similarly, for i ∈ I ̸=

j and i′ ∈ I ̸=
j′ with j ̸= j′, Σi

a = Σi′

b ⇏ Ψj(Σi
a) = Ψj′(Σi′

b). Hence, if
i, i′ ∈ I=

j , then Σi
a = Σi′

b ⇒ Ψj(Σi
a) = Ψj(Σi′

b). Similarly, if i, i′ ∈ I ̸=
j , then Σi

a = Σi′

b ⇒
Ψj(Σi

a) = Ψj(Σi′

b). Therefore, each transcript τ c
i , where i ∈ I=

j or i ∈ I ̸=
j , is now modified

to include the corresponding intermediate input-output values for the i-th instance of the
construction. Thus,

τ i
c = {(M i

1, T i
1, Σi

1, Θi
1, Ψj(Σi

1), Ψj(Θi
1)), . . . , (M i

qi
, T i

qi
, Σi

qi
, Θi

qi
, Ψj(Σi

qi
), Ψj(Θi

qi
))}.

In all the following, the complete construction query transcript is

τc =
u⋃

i=1
τ i

c

and the overall transcript is τ = τc ∪ τp. The modified experiment only makes the
distinguisher more powerful and hence the distinguishing advantage of A in this experiment
is no less than its distinguishing advantage in the former. Let Xre denote the random
variable that takes a transcript τ realized in the real world. Similarly, Xid denotes the
random variable that takes a transcript τ realized in the ideal world. The probability
of realizing a transcript τ in the ideal (resp. real) world is called the ideal (resp. real)
interpolation probability. A transcript τ is said to be attainable with respect to A if its
ideal interpolation probability is non-zero, and V denotes the set of all such attainable
transcripts. Following these notations, we now state the main theorem of the H-coefficient
technique [Pat08]:

Theorem 2 (H-Coefficient Technique). Let V = GoodT ⊔ BadT be a partition of the
set of attainable transcripts. Suppose there exists ϵratio ≥ 0 such that for any τ = (τc, τp) ∈
GoodT,

pre(τ)
pid(τ)

∆= Pr[Xre = τ]
Pr[Xid = τ] ≥ 1− ϵratio,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ BadT] ≤ ϵbad. Then

Advmprf
Π (A) ≤ ϵratio + ϵbad. (3)

Therefore, to prove the security of the construction using the H-coefficient technique, we
need to identify the set of bad transcripts and compute an upper bound for their probability
in the ideal world. Then we find a lower bound for the ratio of the real to ideal interpolation
probability for a good transcript. We have already identified the bad transcripts in Fig. 4.1
and Fig. 4.2. Therefore, it only remains to bound the probability of bad transcripts in
the ideal world and provide a lower bound for the ratio of the real to ideal interpolation
probability for a good transcript. Having explained the H-coefficient technique in the view
of our construction, it follows that for each i ∈ [u], C2[H, E](Li

1,Li
2,Ki) 7→ τ i

c denotes the
following:

1. Σi
a = (H1

Li
1
(M i

a)), Θi
a = (H2

Li
2
(M i

a)),

2. EKi(Σi
a) = Ψj(Σi

a), EKi(Θi
a) = Ψj(Θi

a), for some j such that i ∈ I=
j or i ∈ I ̸=

j and

3. EKi(Σi
a)⊕ EKi(Θi

a) = T i
a.

210 Tight Multi-User Security Bound of DbHtS

4.3 Bounding the Probability of Bad Transcripts
We call a transcript τ = (τc, τp) bad if at least one of the flags is set to 1 during the
generation of the transcript in Fig. 4.1 and Fig. 4.2. Recall that BadT ⊆ V is the set of
all attainable bad transcripts and GoodT = V \ BadT is the set of all attainable good
transcripts. We bound the probability of bad transcripts in the ideal world as follows.

Lemma 2. Let τ = (τc, τp) be any attainable transcript. Let Xid and BadT be defined as
above. Then

Pr[Xid ∈ BadT] ≤ q

2n
+ 2u2

2kh+k
+ 2qpϵreg

2k
+ q2ϵuniv

2n
+ 2q2ϵreg

2k
+ 4q4/3ϵuniv

+q2ϵ2
univ
2 + 2pq

2n+k
+ pq1/3

2k
+ pq5/3

2n+k
.

Proof. By abusing the notation, we refer the bad events by their corresponding flag
variables as defined in Fig. 4.1, Fig. 4.2 and Fig. 4.3. That is we use Bad-Tag to refer to
that event for which Bad-Tag flag has been set to 1. In other words, we say that the event
Bad-Tag holds if and only if Bad-Tag flag has been set to 1. Using the union bound, we
write

Pr[Xid ∈ BadT] ≤ Pr[Bad-Tag] + Pr[BadK] +
4∑

i=1
Pr[Badi | BadK]

+Pr[Bad-Samp | BadK]. (4)

In the following, we individually bound each bad event and then use Eqn. (4) to derive
the result. In the subsequent analysis, we assume that |Kh| = kh and |K| = k.

A. Bounding Event Bad-Tag.
For a fixed choice of indices, the probability of the event can be bound by 1/2n as the
outputs of the construction queries are sampled uniformly and independently of other
random variables. Therefore, by summing over all possible choices of indices, we have

Pr[Bad-Tag] ≤ q

2n
. (5)

B. Bounding Event BadK.

For a fixed choice of indices, the probability of the event can be bound by 1/2kh+k as the
event Ki1 = Ki2 is independent of Li1

b = Li2
b for each b ∈ {1, 2}. Therefore, summing over

all possible choices of indices, we have

Pr[BadK] ≤ 2u2

2kh+k
. (6)

C. Bounding Event Bad1 | BadK.
We say that the event Bad1 holds if either of the events defined in line 5.(a) or in line 5.(b)
of Fig. 4.2 holds. We refer to the event defined in line 5.(a) as B.11 and refer to the event
defined in line 5.(b) as B.12.
▷ Bounding B.11 | BadK: For a fixed choice of indices, Σi

a = u[0]jα is bound by the regular
advantage of the hash function H1

Li
1
. As the hash key Li

1 is independent of the block cipher

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 211

key Ki, we have

Pr[B.11 | BadK] ≤
∑
i∈[u]
a∈[qi]

∑
j∈[s]

α∈[pj]

Pr[Ki = Jj] · Pr[Σi
a = u[0]jα]

=
∑
i∈[u]
a∈[qi]

∑
j∈[s]

α∈[pj]

ϵreg ·
1
2k

(1)
≤ qpϵreg

2k
, (7)

where (1) holds due to the fact that (q1 + . . . + qu) = q and (p1 + . . . + ps) = p.
▷ Bounding B.12 | BadK: With an identical argument, one can show that the probability
of the event B.12 can be bounded by qpϵreg

2k , i.e.,

Pr[B.12 | BadK] ≤ qpϵreg

2k
. (8)

Therefore, by combining Eqn. (7) and Eqn. (8), we have

Pr[Bad1 | BadK] ≤ Pr[B.11 | BadK] + Pr[B.12 | BadK] ≤ 2qpϵreg

2k
. (9)

D. Bounding Event Bad2 | BadK.
We say that the event Bad2 holds if either of the events defined in line 7.(a) or in line 7.(b)
or line 7.(c) or in line 7.(d) of Fig. 4.2 holds. We refer to the event defined in line 7.(a) as
B.21, in line 7.(b) as B.22, in line 7.(c) as B.23 and finally in line 7.(d) as B.24.
▷ Bounding B.21 | BadK: For a fixed choice of indices, we analyze the probability of the
event

Σi
a = Σi

b ∧ T i
a = T i

b .

Due to independence of the hash key Li
1 and T i

a, the probability of this joint event can
be bound by the universal property of the H1 hash function and the randomness of T i

a.
Therefore,

Pr[B.21 | BadK] ≤
∑

i∈[u], a,b∈[qi]

Pr[Σi
a = Σi

b ∧ T i
a = T i

b] ≤ q2ϵuniv

2n+1 . (10)

▷ Bounding B.22 | BadK: We bound the event given BadK, i.e. even if the block cipher
keys for users i1 and i2 collide, their corresponding hash keys, i.e., Li1

1 and Li2
2 do not

collide. Given this event, for a fixed choice of indices, we bound Σi1
a = Σi2

b using the regular
property of the hash function H1 with the randomness of the hash key Li1

1 . Moreover,
the first event is independent of the second event and can thus be bound exactly by 2−k.
Therefore,

Pr[B.22 | BadK] ≤
∑

i1,i2∈[u]
a∈[qi1],b∈[qi2]

ϵreg ·
1
2k
≤ q2ϵreg

2k
. (11)

▷ Bounding B.23 | BadK and B.24 | BadK: Bounding B.23 | BadK and B.24 | BadK is
identical to bounding B.21 | BadK and B.22 | BadK respectively. Hence,

Pr[B.23 | BadK] ≤ q2ϵuniv

2n+1 , Pr[B.24 | BadK] ≤ q2ϵreg

2k
. (12)

212 Tight Multi-User Security Bound of DbHtS

Therefore, by combining Eqn. (10)-Eqn. (12),

Pr[Bad2 | BadK] ≤ Pr[B.21 | BadK] + Pr[B.22 | BadK] + Pr[B.23 | BadK] + Pr[B.24 | BadK]

≤ q2ϵuniv

2n
+ 2q2ϵreg

2k
. (13)

E. Bounding Event Bad3 | BadK.
We say that the event Bad3 holds if either of the events defined in line 9.(a) or in line 9.(b)
of Fig. 4.2 holds. We refer to the event defined in line 9.(a) as B.31 and in line 9.(b) as
B.32.
▷ Bounding B.31 | BadK and B.32 | BadK: We first bound the event B.31 | BadK. For a
fixed choice of indices, we define an indicator random variable Ii

a,b which takes the value 1
if Σi

a = Σi
b, and 0 otherwise. Let Ii =

∑
a̸=b

Ii
a,b. By linearity of expectation,

E[Ii] =
∑
a ̸=b

E[Ii
a,b] =

∑
a ̸=b

Pr[Σi
a = Σi

b] ≤ q2
i ϵuniv

2 .

Now,

Pr[B.31 | BadK] ≤
∑
i∈[u]

Pr[|{(a, b) ∈ [qi]2 : Σi
a = Σi

b}| ≥ q
2/3
i]

=
u∑

i=1
Pr[Ii ≥ q

2/3
i]

(1)
≤

u∑
i=1

q2
i ϵuniv

2q
2/3
i

≤ q4/3ϵuniv

2 , (14)

where (1) holds due to the Markov inequality.
Similar to B.31 | BadK, we bound B.32 | BadK as follows:

Pr[B.32 | BadK] ≤ q4/3ϵuniv

2 . (15)

Therefore, by combining Eqn. (14) and Eqn. (15), we have

Pr[Bad3 | BadK] ≤ Pr[B.31 | BadK] + Pr[B.32 | BadK] ≤ q4/3ϵuniv. (16)

F. Bounding Event Bad4 | BadK.
We say that the event Bad4 holds if either of the events defined in line 11.(a) or in line
11.(b) or in line 11.(c) of Fig. 4.2 holds. We refer to the event defined in line 11.(a) as
B.41, line 11.(b) as B.42 and in line 11.(c) as B.43.
▷ Bounding B.41 | BadK: Due to independence of the hash key Li

1 and Li
2, for a fixed

choice of indices, the probability of this joint event can be bound by the universal property
of the individual hash functions H1 and H2. Therefore, varying over all possible choices of
indices, we have

Pr[B.41 | BadK] ≤
∑
i∈[u]

a̸=b∈[qi]

Pr[Σi
a = Σi

b ∧Θi
a = Θi

b] =
∑
i∈[u]

a̸=b∈[qi]

Pr[Σi
a = Σi

b] · Pr[Θi
a = Θi

b]

≤ q2ϵ2
univ
2 . (17)

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 213

▷ Bounding B.42 | BadK and B.43 | BadK: We first bound the event B.42 | BadK. We
bound this event given B.31. This results in the fact that for a fixed i ∈ [u], the number
of quadruples (a, b, c, d) such that Σi

a = Σi
b, Σi

c = Σi
d holds is at most q

4/3
i . For a fixed

choice of such quadruples, the event Θi
b = Θi

c holds with probability at most ϵuniv due to
the universal property of the hash function H2. Therefore,

Pr[B.42 | B.31 ∧ BadK] ≤
∑
i∈[u]

q
4/3
i ϵuniv ≤ q4/3ϵuniv. (18)

Therefore, from Eqn. (14) and Eqn. (18), we have

Pr[B.42 | BadK] ≤ Pr[B.42 | B.31 ∧ BadK] + Pr[B.31 | BadK] ≤ 3
2q4/3ϵuniv. (19)

Similar to B.42, we bound B.43 as follows:

Pr[B.43 | B.32 ∧ BadK] ≤ q4/3ϵuniv. (20)

Therefore, from Eqn. (15) and Eqn. (20), we have

Pr[B.43 | BadK] ≤ Pr[B.43 | B.32 ∧ BadK] + Pr[B.32 | BadK] ≤ 3
2q4/3ϵuniv. (21)

By combining Eqn. (17), Eqn. (19) and Eqn. (21), we have

Pr[Bad4 | BadK] ≤ q2ϵ2
univ
2 + 3q4/3ϵuniv. (22)

G. Bounding Event Bad-Samp.
We consider bounding this event as a union of several events, namely for a fixed i ∈ [u], j ∈
[s] and a ∈ [qi], we define

BSi,j,a
∆= Ki = Jj ∧ Zi

a ⊕ T i
a ∈ Ran(EJj).

Note that, Zi
a ⊕ T i

a hits either the output of some primitive query V j
α with ideal-cipher

key being Jj such that Ki = Jj , where α ∈ [pj]. We denote this event as BS1i,j,a. On
the other hand, Zi

a ⊕ T i
a hits the output of some previously sampled Σ̂i′

a′ or Θ̂i′

a′ with
the corresponding block cipher key Ki′ matches with Ki which in turn collides with the
ideal-cipher key Jj . We denote this event as BS2i,i′,j,a,a′ . Therefore, we have

Pr[Bad-Samp] ≤
∑
(j,α)

∑
(i,a)

Pr[BS1i,j,a,α] +
∑
(i,i′)

∑
j

∑
(a,a′)

Pr[BS2i,i′j,a,a′] (23)

Now, we bound the probability of the event BS1i,j,a,α and BS2i,i′,j,a,a′ as follows:
Case 1:

BS1i,j,a,α
∆= Ki = Jj ∧ Zi

a ⊕ T i
a = V j

α .

By the simple union bound, we have∑
(j,α)

∑
(i,a)

Pr[BS1i,j,a,α] ≤
∑
(j,α)

∑
(i,a)

1
2k
· 1

2n − pj
≤ 2pq

2n+k
, (24)

where the number of choices for (i, a) and (j, α) are at most q and p, respectively and pj

is assumed to be at most 2n−1. Thus, summing over all possible choices of (i, j, a, α) and
by assuming pj ≤ 2n−1, we have the result.

214 Tight Multi-User Security Bound of DbHtS

Case 2:
BS2i,i′,j,a,a′

∆= Ki = Ki′
= Jj ∧ Zi

a ⊕ T i
a = Θ̂i′

a′/Σ̂i′

a′ .

We bound the probability of the event separately depending on the number of queries
made by a user. (i) For users with “many” queries, we will argue that the probability of
having key-collision for that user is low. (ii) For users with “not many” queries, we will
argue that the probability of the above event achieves the desired bound. Detail analysis
is as follows:
Let qi be the number of queries made by user i, where i ∈ [u] and q1 + q2 + . . . + qu = q.
W.l.o.g. let us assume that q1 ≥ q2 ≥ . . . ≥ qu. We define the event Event as follows: if
the keys for any of the first q1/3 users collide with a primitive query key we call Event
occurs. It is easy to see that

Pr[Event] ≤ q1/3 · p
2k

. (25)

Thus, for the first q1/3 users, we bound the probability of the required event by q1/3·p
2k . The

case for u < q1/3 is trivial. For the remaining users, we bound the probability as follows:
u∑

i=q1/3

p · q2
i

2n+k
≤ pq5/3

2n+k
. (26)

Here we use the fact that qi ≤ q2/3 for all i = q1/3, . . . , u (as q1 + . . . + qu = q). By
combining Eqn. (25) and Eqn. (26), we have

∑
(i,i′)

∑
j

∑
(a,a′)

Pr[BS2i,i′j,a,a′] ≤ pq1/3

2k
+ pq5/3

2n+k
. (27)

Finally, by combining Eqn. (23), Eqn. (24) and Eqn. (27), we have

Pr[Bad-Samp] ≤ 2pq

2n+k
+ pq1/3

2k
+ pq5/3

2n+k
. (28)

Finally, the result follows by combining Eqn. (5)-Eqn. (28) and by assuming k ≥ n.
Remark 4. We would like to mention here that during the probability analysis for bounding
the event Bad-Samp, we considered only the case that Bad-Samp happens after line-7 of
Fig. 4.3, not after line-8. This is because occurence of the event after line-8 of Fig. 4.3
implies that Zi

1,a matches with some previously sampled Z values and that basically falls
back to the case in line-7 of Fig. 4.3.

4.4 Analysis of Good Transcripts
In this section, we compute a lower bound for the ratio of the real to ideal interpolation
probability for a good transcript. We first consider the set of transcripts Q=. For each
j ∈ [r] and for each i ∈ I=

j , we consider the sequence

Σ̃i := (Σi
1, Σi

2, . . . , Σi
qi

), Θ̃i := (Θi
1, Θi

2, . . . , Θi
qi

).

From this sequence, we construct a bipartite graph Gi, where the nodes in one partition
represent values Σi

a and the nodes in other, Θi
a; We put an edge between the node

corresponding to Σi
a and Θi

a with the label being T i
a, where Σi

a ⊕Θi
a = T i

a. If Σi
a = Σi

b,
then we merge the correponding nodes into a single node, and similarly for Θi

a = Θi
b. This

leads us to break the graph into wi components. As the transcript is good, it is easy to see
that each component is acyclic (otherwise, B.41 would have been satisfied) and contains a

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 215

path of length at most 3 (otherwise either B.42 or B.43 would have been satisfied). Due
to B.31 ∧ B.32, the component size is restricted up to q2/3. Moreover, due to B.11 ∧ B.12,
each vertex of the graph, i.e., Σi

a or Θi
a does not collide with the input of any ideal-cipher

query such that the ideal-cipher key collides with the i-th user key. Hence, each vertex of
the graph Gi is fresh in the sense that they do not collide with the input of any ideal-cipher
query. Note that, B.21 (resp. B.23) ensures the fact that if Σi

a collides with Σi
b (resp. Θi

a

collides with Θi
b), then T i

a must be distinct from T i
b , otherwise, bad event B.41 would have

been satisfied. On the other hand, B.22 (resp. B.24) implies that there should not be any
intersection between the equation variables corresponding to two different users whose
keys have been collided.
Let vi be the total number of nodes of the graph Gi. Similar to Q=, we consider Q̸=. For
each j ∈ [r′] and for each i ∈ I ̸=

j , consider the sequence

Σ̃i := (Σi
1, Σi

2, . . . , Σi
qi

), Θ̃i := (Θi
1, Θi

2, . . . , Θi
qi

).

Similar to Gi, we construct a bipartite graph Hi, one of whose partitions represents the
nodes corresponding to Σi

a and the other, the nodes corresponding to Θi
a. We put an edge

between the node corresponding to Σi
a and Θi

a with the label being T i
a, where Σi

a⊕Θi
a = T i

a.
However, if two nodes represent the same values, then we merge them into a single node.
Let w′

i be the number of components of Hi and v′
i be the total number of vertices. Then

for a good transcript τ = (τc, τp), realizing τ is almost as likely in the real world as in the
ideal world:

Lemma 3 (Good Lemma). Let τ = (τc, τp) ∈ GoodT be a good transcript. Let Xre and
Xid be defined as above. Then

Pr[Xre = τ]
Pr[Xid = τ] ≥ 1− 9q4/3

8 · 2n
− 3q8/3

2 · 22n
− q2

22n
− 9q7/3

8 · 22n
− 8q4

3 · 23n
.

Proof. We are now ready to calculate the real interpolation probability. For this, we
must bound the total number of input-output pairs on which the block cipher E with
different keys is executed. As the transcript releases the 2kh-bit hash keys and the k-bit
block cipher key for each user, it contributes to a term 2−(2kh+k) in the real interpolation
probability calculation. Now, for each j ∈ [r], the block cipher E with key Jj is evaluated
on a total of

pj +
∑

i∈I=
j

vi

input-output pairs. For the remaining ideal cipher keys, with which none of the users’
block cipher keys have collided, we have pj input-output pairs, which are fixed due to the
evaluation of the block cipher with those ideal cipher keys. Moreover, for each j ∈ [r′], the
block cipher E is evalued on a total of

∑
i∈I ̸=

j

v′
i input-output pairs with key Kj . Summarizing

the above,

Pr[Xre = τ] =
u∏

i=1

1
22kh+k

·
(r∏

j=1

1
P(2n, pj +

∑
i∈I=

j

vi)

)
·

∏
j∈[s]\[r]

1
P(2n, pj) ·

(r′∏
j=1

1
P(2n,

∑
i∈I ̸=

j

v′
i)

)
.

(29)
Ideal Interpolation Probability: The term

u∏
i=1

2−nqi , which is contributed to the

ideal interpolation probability due to the sampling of responses of the adversarial query,
samples 2kh-bit hash keys and k-bit block cipher keys for all u users. For each j ∈ [r], and
for each i ∈ I=

j , we construct the graph Gi as defined above. Now, we have the following
claim:

216 Tight Multi-User Security Bound of DbHtS

Claim 1. For each j ∈ [r] and for each i ∈ I=
j , the graph Gi good.

Proof. First of all, note that graph Gi does not have any cycle of length 2, otherwise the
bad event B.41 would have been satisfied. Moreover, every component of the graph has
a path of length at most three, otherwise the bad event B.43 would have been satisfied.
This excludes the possibility of existence of even length cycle in the bipartite graph Gi.
Moreover, due to B.21 ∧ B.23, the xor of the labels of any path of length two in the graph
Gi is non-zero and due to B.41 ∧ B.42 ∧ B.43, it follows that the xor of the labels of any
path of length three in the graph is non-zero. Hence, the graph Gi good.

Now, for each j ∈ [r] and for each i ∈ I=
j , we sample the value of a node for each component

of the graph Gi. Hence, for j ∈ [r], the total number of sampled points is

pj +
∑

i∈I=
j

wi.

Moreover, for each j ∈ [s] \ [r], the total number of sample points is pj . Subsequently, we
consider the set of transcripts Q̸=. For each j ∈ [r′], and for each i ∈ I ̸=

j , we construct
the graph Hi as defined above. As we reasoned about the goodness of the graph Gi, the
similar reasoning applies for the goodness of the graph Hi too. This allows us to compute
the set Sj for each j ∈ [r′] as defined in line 15 of Fig. 4.3 (which is defined as the number
of tuples (Qi

a, Ri
a) such that Qi

a ⊕Ri
a = T i

a for all i ∈ I ̸=
j and for all a ∈ [qi]). In summary,

Pr[Xid = τ] =
u∏

i=1

1
2nqi
·

u∏
i=1

1
22kh+k

·
(r∏

j=1

1
P(2n, pj +

∑
i∈I=

j

wi)

)
·

∏
j∈[s]\[r]

1
P(2n, pj) ·

(r′∏
j=1

1
|Sj |

)
.

(30)

Calculation of the ratio: By plugging in the value of |Sj | from Lemma 1 into
Eqn. (30) and then taking the ratio of Eqn. (29) to Eqn. (30), we have

p(τ) =
u∏

i=1
2nqi ·

r∏
j=1

P(2n, pj +
∑

i∈I=
j

wi)

P(2n, pj +
∑

i∈I=
j

vi)
·

r′∏
j=1

|Sj |
P(2n,

∑
i∈I ̸=

j

v′
i)

=
u∏

i=1
2nqi ·

r∏
j=1

1
P(2n − pj −

∑
i∈I=

j

wi,
∑

i∈I=
j

(vi − wi))
·

r′∏
j=1

P(2n,
∑

i∈I ̸=
j

v′
i) ·

(
1− ϵj

)

P(2n,
∑

i∈I ̸=
j

v′
i) · 2

n
∑

i∈I̸=
j

(v′
i
−w′

i
)
,

where

ϵj
∆=

∑
i∈I ̸=

j

9(qc)2
i

8 · 2n
+ 3qc

i q2
i

2 · 22n
+ q2

i

22n
+ 9(qc)2

i qi

8 · 22n
+ 8q4

i

3 · 23n
. (31)

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 217

Therefore, we have

p(τ) =
u∏

i=1
2nqi ·

r∏
j=1

1
P(2n − pj −

∑
i∈I=

j

wi,
∑

i∈I=
j

(vi − wi))
·

r′∏
j=1

1

2

n
∑

i∈I̸=
j

(v′
i
−w′

i
)
·

r′∏
j=1

(
1− ϵj

)

=
r∏

j=1

2
n

∑
i∈I=

j

qi

P(2n − pj −
∑

i∈I=
j

wi,
∑

i∈I=
j

(vi − wi))︸ ︷︷ ︸
≥1

·
r′∏

j=1

2

n
∑

i∈I̸=
j

qi

2

n
∑

i∈I̸=
j

(v′
i
−w′

i
)

︸ ︷︷ ︸
≥1

·
r′∏

j=1

(
1− ϵj

)

≥
(

1−
r′∑

j=1
ϵj

)
(1)
≥ 1−

r′∑
j=1

∑
i∈I ̸=

j

(
9(qc)2

i

8 · 2n
+ 3qc

i q2
i

2 · 22n
+ q2

i

22n
+ 9(qc)2

i qi

8 · 22n
+ 8q4

i

3 · 23n

)

(2)
≥ 1−

r′∑
j=1

∑
i∈I ̸=

j

(
9q

4/3
i

8 · 2n
+ 3q

8/3
i

2 · 22n
+ q2

i

22n
+ 9q

7/3
i

8 · 22n
+ 8q4

i

3 · 23n

)

≥ 1−
(

9q4/3

8 · 2n
+ 3q8/3

2 · 22n
+ q2

22n
+ 9q7/3

8 · 22n
+ 8q4

3 · 23n

)
,

where (1) holds due to Eqn. (31) and (2) holds due to the fact that qc
i ≤ q

2/3
i for all i ∈ I ̸=

j

such that j ∈ [r′]. Note that for each j ∈ [r],
∑

i∈I=
j

(vi − wi) denotes the total number

of edges in the graph
⋃

i∈I=
j

Gi, which is
∑

i∈I=
j

qi. Similarly, for each j ∈ [r′],
∑

i∈I ̸=
j

(v′
i − w′

i)

denotes the total number of edges in the graph
⋃

i∈I ̸=
j

Hi, which is
∑

i∈I ̸=
j

qi.

5 Tight Security Bound of Two-Keyed Polyhash based
DbHtS Construction

Two-keyed Polyhash-based DbHtS construction C2[PH-DbH, E], as proposed in [DDNP18],
is the instantiation of the Two-Keyed-DbHtS framework which is build on the Polyhash based
double block hash function PH-DbH. In [DDNP18], the PRF security of C2[PH-DbH, E]
has been proven to be roughly in the order of q3ℓ2/22n in the single-user setting. In this
section we improve its bound up to 23n/4 queries in the multi-user setting. Moreover,
the proof is based on the ideal cipher model. Before going to the security proof of the
construction, we first revisit to the two-keyed Polyhash-based DbHtS construction.
PolyHash [dB93, BJKS93, Tay93] is a very efficient algebraic hash function. For a fixed
natural number n, it first samples an n-bit key L uniformly at random from {0, 1}n. To
apply this function on a message M ∈ {0, 1}∗, we first apply an injective padding function
10∗ (i.e. append a bit 1 followed by a minimum number of zeroes to the message M so
that the total number of bits in the padded message becomes a multiple of n). Let the
padded message be M∗ = M1∥M2∥ . . . ∥Ml, where l is the number of n-bit blocks in it.
Then, we define the PolyHash function as follows:

PHL(M∗) ∆= M1 · Ll ⊕M2 · Ll−1 ⊕ . . .⊕Ml · L,

where l is the number of blocks of M and the multiplications are defined in the field
GF(2n). Then Polyhash [MI11] is ℓ/2n-regular, ℓ/2n-axu and ℓ/2n-universal, as shown in

218 Tight Multi-User Security Bound of DbHtS

the following lemma, where ℓ is the maximum number of message blocks (the proof of the
lemma is related to a result on the number of distinct roots of a polynomial):

Lemma 4. Let PH be the PolyHash function as defined above. Then PH is ℓ/2n-regular,
ℓ/2n-almost-xor universal and ℓ/2n-universal.

Proof. We first compute the regular advantage of the hash function. Clearly, for any
∆ ∈ {0, 1}n, and any M ∈ {0, 1}∗, f(L) := PH(L, M) ⊕ ∆ is a polynomial in L with
constant term ∆ having degree at most l 11, where l is the number of message blocks of M
after padding. Therefore, PH(L, M) = ∆ if and only if f(L) = 0. Since, f is a polynomial
of degree at most l, f(L) = 0 has at most l solutions. As a result, number of L such that
PH(L, M) = ∆ holds is at most l and hence ϵreg = ℓ/2n, where ℓ is the maximum number
of message blocks among all messages. Moreover, for any two distinct messages M and
M ′ and for any ∆ ∈ {0, 1}n, f(L) := PH(L, M) ⊕ PH(L, M ′) ⊕∆ is a polynomial in L
with degree at most l, where l is the maximum number of message blocks among M and
M ′ after padding. Therefore, PH(L, M)⊕ PH(L, M ′) = ∆ if and only if f(L) = 0. Since,
f is a polynomial of degree at most l, f(L) = 0 has at most l solutions and hence the
number of L such that PH(L, M) ⊕ PH(L, M ′) = ∆ holds is at most l. Therefore, the
almost-xor-universal advantage ϵaxu of PH is ℓ/2n, where ℓ is the maximum number of
message blocks among all queries.

From Lemma 4, a simple corollary immediately follows:

Corollary 1. Let fixb(PH) be the variant of the Polyhash function in which the least
significant bit of the n-bit output of the function is fixed to bit b. Then, fixb(PH) is a
2ℓ/2n-regular, 2ℓ/2n-almost-xor universal and 2ℓ/2n-universal hash function.

We now define the Polyhash-based double-block hash function, (PH-DbH function):

PH-DbH(L1,L2)(M) ∆=
(

fix0(PHL1(M))︸ ︷︷ ︸
H1

L1

, fix1(PHL2(M))︸ ︷︷ ︸
H2

L2

)
. (32)

Thus, two independent instances of the Polyhash function keyed with two independent
keys L1 and L2 are applied separately to a message M , and the least significant bit of
their output is chopped and prepended with bits 0 and 1 respectively. The two-keyed
PolyHash-based DbHtS construction can now be defined directly from the Two-Keyed-
DbHtS construction as follows: encrypt fix0(PHL1(M)) and fix1(PHL2(M)) through a block
cipher EK and xor the result together to produce the output. An algorithmic description
of the construction is shown in Fig. 5.1.

C2[PH-DbH, E](K1,K2,K)(M)

1 : Σ = fix0(PHK1 (M));
2 : Θ = fix1(PHK2 (M));
3 : T = EK(Σ)⊕ EK(Θ);
return T ;

PHL(M)

1 : M1∥ . . . ∥Mℓ
n←−M∥10∗;

2 : Y = M1 · Lℓ ⊕M2 · Lℓ−1 ⊕ · · · ⊕Mℓ · L;
return Y ;

Figure 5.1: The two-keyed Polyhash-based DbHtS construction C2[PH-DbH, E] with PH-
DbH as the underlying double-block hash function. M1∥M2∥ . . . ∥Mℓ

n←−M∥10∗ denotes
the parsing of message M∥10∗ into n bit strings.

11We write the degree of f is at most l because the coefficient of the leading term of the polynomial can
be zero and in that case the polynomial will be of degree less than l.

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 219

Clearly, the PH-DbH function is a good double-block hash function as the individual hash
functions H1 and H2 are both 2ℓ/2n-regular and universal. Furthermore, for a randomly
chosen pair of keys L1, L2, and for any pair of messages M, M ′ ∈ {0, 1}∗,

Pr[fix0(PHL1(M)) = fix1(PHL2(M ′))] = 0.

Therefore, combining the Corollary 1 with Theorem 1, we derive the following security of
the two-keyed PolyHash-based DbHtS construction C2[PH-DbH, E].

Theorem 3. Let K be a non-empty finite set. Let E : K × {0, 1}n → {0, 1}n be an n-bit
block cipher and PH-DbH : ({0, 1}n × {0, 1}n) × {0, 1}∗ → ({0, 1}n)2 be the PolyHash-
based double-block hash function as defined above. Then any computationally unbounded
distinguisher making a total of q construction queries across all u users such that each
queried message is at most ℓ blocks long with ℓ ≤ 2n−2 and a total of p primitive queries to
the block cipher E can distinguish C2[PH-DbH, E] from an n-bit uniform random function
with advantage

AdvmuPRF-ICM
C2[PH-DbH,E](u, q, p, ℓ) ≤ 9q4/3

8 · 2n
+ 3q8/3

2 · 2n
+ q2

22n
+ 9q7/3

8 · 22n
+ 8q4

3 · 23n
+ q

2n
+ 2u2

2n+k

+ 4qpℓ

2n+k
+ 2q2ℓ

22n
+ 4q2ℓ

2n+k
+ 8q4/3ℓ

2n
+ 4q2ℓ2

22n
+ 2pq

2n+k
+ pq1/3

2k

+pq5/3

2n+k
.

Remark 5. We would like to mention that the definition of the Polyhash function used in
this paper is different from that used in [GW22]. Nevertheless, one can also establish the
3n/4-bit multi-user security of the two-keyed PolyHash-based DbHtS construction with
the Polyhash function used in [GW22].

6 Conclusion and Future Problems
In this paper, we have shown that the Two-Keyed-DbHtS construction is multi-user secured
up to 23n/4 queries in the ideal-cipher model. As an instantiation of the result, we have
shown that Polyhash-based DbHtS provides 3n/4-bit multi-user security in the ideal-cipher
model. Combining it with the generic result on the attack complexity of the DbHtS
construction makes the bound tight. However, we cannot apply this result to analyze the
security of 2K-SUM-ECBC, 2K-PMAC_Plus and 2K-LightMAC_Plus, as their underlying
DbH functions are based on block ciphers, and our proof technique does not support their
security analysis in the ideal-cipher model. This is because the underlying DbH function of
these constructions is build on the top of block ciphers. We believe that proving 3n/4-bit
security of the DbHtS construction based on block cipher-based double-block hash functions
needs a careful study.

Road Block in the Analysis of Block Cipher Based DbH Function. As mentioned earlier
that analysing the security of DbHtS construction which is build on a block cipher based
DbH function in the ideal-cipher model, one needs to assume that adversary can make
primitive queries to the underlying block cipher used in the DbH function. As a result, one
needs to bound the universal and the regular advantage of the underlying DbH function
in the ideal-cipher model. The most non-trivial part of bounding the universal and the
regular advantage of the underlying DbH function in the ideal-cipher model is when all the
inputs to the block cipher are non-fresh, i.e., the adversary chooses message after all the
primitive queries are done and the chosen messages are functions of the primitive query
responses. We believe that this case is the major road block in establishing the desired

220 Tight Multi-User Security Bound of DbHtS

universal and regular bound of the DbH function in the ideal-cipher model. It will be
interesting to see O(ℓ/22n) bound of the universal and the regular advantage of a block
cipher based DbH function in the ideal-cipher model.

References
[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption

in a multi-user setting: Security proofs and improvements. In Bart Preneel,
editor, Advances in Cryptology - EUROCRYPT 2000, International Conference
on the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 259–274. Springer, 2000.

[BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-
SIV: multi-user security, faster key derivation, and better bounds. In Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
April 29 - May 3, 2018 Proceedings, Part I, pages 468–499, 2018.

[Bih02] Eli Biham. How to decrypt or even substitute des-encrypted messages in 228
steps. Inf. Process. Lett., 84(3):117–124, 2002.

[BJKS93] Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben J. M.
Smeets. On families of hash functions via geometric codes and concatena-
tion. In Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993,
Proceedings, pages 331–342, 1993.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES 2007, Proceedings,
pages 450–466, 2007.

[BKR98] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-rackoff backwards:
Increasing security by making block ciphers non-invertible. In EUROCRYPT
’98, Proceeding., pages 266–280, 1998.

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399,
2000.

[BMS05] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-
memory trade-offs with multiple data. In Bart Preneel and Stafford E. Tavares,
editors, Selected Areas in Cryptography, 12th International Workshop, SAC
2005, Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers,
volume 3897 of Lecture Notes in Computer Science, pages 110–127. Springer,
2005.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 321–345. Springer,
2017.

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 221

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for
parallelizable message authentication. In EUROCRYPT 2002, pages 384–397,
2002.

[BT16a] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages
247–276. Springer, 2016.

[BT16b] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, pages 247–276, 2016.

[CMS11] Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tight-
ness. In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -
18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer
Science, pages 293–319. Springer, 2011.

[dB93] Bert den Boer. A simple and key-economical unconditional authentication
scheme. Journal of Computer Security, 2:65–72, 1993.

[DDNP18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Goutam Paul. Double-
block hash-then-sum: A paradigm for constructing bbb secure prf. IACR
Transactions on Symmetric Cryptology, 2018(3):36–92, 2018.

[GPPR12] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. IACR Cryptology ePrint Archive, 2012:600, 2012.

[GW22] Tingting Guo and Peng Wang. A note on the security framework of two-key
dbhts macs. Cryptology ePrint Archive, Report 2022/375, 2022.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length
extension: Exact bounds and multi-user security. In Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 3–32, 2016.

[HT17] Viet Tung Hoang and Stefano Tessaro. The multi-user security of double
encryption. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, pages
381–411, 2017.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: one-key CBC MAC. In Fast
Software Encryption, 2003, pages 129–153, 2003.

[KLL20] Seongkwang Kim, ByeongHak Lee, and Jooyoung Lee. Tight security bounds
for double-block hash-then-sum macs. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture
Notes in Computer Science, pages 435–465. Springer, 2020.

222 Tight Multi-User Security Bound of DbHtS

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-
key security degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part II, volume 10625 of
Lecture Notes in Computer Science, pages 575–605. Springer, 2017.

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic attacks
against beyond-birthday-bound macs. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 306–336. Springer, 2018.

[LPTY16] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC
mode for lightweight block ciphers. In Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pages 43–59, 2016.

[M.D07] M.Dworkin. Recommendation for block cipher modes of operation: Ga-
lois/counter mode (gcm) and gmac, 2007.

[MI11] Kazuhiko Minematsu and Tetsu Iwata. Building blockcipher from tweakable
blockcipher: Extending FSE 2009 proposal. In Cryptography and Coding -
13th IMA International Conference, IMACC 2011, Oxford, UK, December
12-15, 2011. Proceedings, pages 391–412, 2011.

[ML15] Nicky Mouha and Atul Luykx. Multi-key security: The even-mansour construc-
tion revisited. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of
Lecture Notes in Computer Science, pages 209–223. Springer, 2015.

[MPS20] Andrew Morgan, Rafael Pass, and Elaine Shi. On the adaptive security of
macs and prfs. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South Korea,
December 7-11, 2020, Proceedings, Part I, volume 12491 of Lecture Notes in
Computer Science, pages 724–753. Springer, 2020.

[MV04] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Inter-
national Conference on Cryptology in India, Chennai, India, December 20-22,
2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004.

[Nai17] Yusuke Naito. Blockcipher-based macs: Beyond the birthday bound without
message length. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part III, volume 10626 of Lecture
Notes in Computer Science, pages 446–470. Springer, 2017.

[Nan17] Mridul Nandi. Birthday attack on dual ewcdm. Cryptology ePrint Archive,
Report 2017/579, 2017. https://eprint.iacr.org/2017/579.

https://eprint.iacr.org/2017/579

Nilanjan Datta, Avijit Dutta, Mridul Nandi and Suprita Talnikar 223

[Pat08] Jacques Patarin. The "coefficients h" technique. In Selected Areas in Cryptog-
raphy, 15th International Workshop, SAC 2008, Sackville, New Brunswick,
Canada, August 14-15, Revised Selected Papers, pages 328–345, 2008.

[Sho00] Victor Shoup. A composition theorem for universal one-way hash functions. In
Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes
in Computer Science, pages 445–452. Springer, 2000.

[SWGW21] Yaobin Shen, Lei Wang, Dawu Gu, and Jian Weng. Revisiting the security of
dbhts macs: Beyond-birthday-bound in the multi-user setting. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in
Computer Science, pages 309–336. Springer, 2021.

[Tay93] Richard Taylor. An integrity check value algorithm for stream ciphers. In
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings,
pages 40–48, 1993.

[Yas10] Kan Yasuda. The sum of CBC macs is a secure PRF. In CT-RSA 2010, pages
366–381, 2010.

[Yas11] Kan Yasuda. A new variant of PMAC: beyond the birthday bound. In
CRYPTO 2011, pages 596–609, 2011.

[ZWSW12] Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. 3kf9: Enhancing
3gpp-mac beyond the birthday bound. In ASIACRYPT 2012, pages 296–312,
2012.

	Introduction
	Issue with the CRYPTO'21 Paper yaobin
	Our Contribution

	Preliminaries
	Distinguishing Advantage
	Block Cipher
	PRF Security in the Ideal-Cipher Model
	Multi-User PRF Security in the Ideal-Cipher Model
	Security of a Keyed Hash Function
	Mirror Theory

	The Two-Keyed DbHtS Construction
	Proof of Theorem 1
	Description of the Ideal World
	Attack Transcript
	Bounding the Probability of Bad Transcripts
	Analysis of Good Transcripts

	Tight Security Bound of Two-Keyed Polyhash based DbHtS Construction
	Conclusion and Future Problems

