
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 1, pp. 111–151. DOI:10.46586/tosc.v2023.i1.111-151

SoK: Modeling for Large S-boxes Oriented to
Differential Probabilities and Linear Correlations

Ling Sun1,2,3,4 and Meiqin Wang1,3,4(�)

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, China
3 School of Cyber Science and Technology, Shandong University, Qingdao, China

4 Quan Cheng Shandong Laboratory, Jinan, China
lingsun@sdu.edu.cn, mqwang@sdu.edu.cn

Abstract. Automatic methods for differential and linear characteristic search are
well-established at the moment. Typically, the designers of novel ciphers also give
preliminary analytical findings for analysing the differential and linear properties
using automatic techniques. However, neither MILP-based nor SAT/SMT-based
approaches have fully resolved the problem of searching for actual differential and
linear characteristics of ciphers with large S-boxes. To tackle the issue, we present
three strategies for developing SAT models for 8-bit S-boxes that are geared toward
differential probabilities and linear correlations. While these approaches cannot
guarantee a minimum model size, the time needed to obtain models is drastically
reduced. The newly proposed SAT model for large S-boxes enables us to establish that
the upper bound on the differential probability for 14 rounds of SKINNY-128 is 2−131,
thereby completing the unsuccessful work of Abdelkhalek et al. We also analyse the
seven AES-based constructions C1 - C7 designed by Jean and Nikolić and compute
the minimum number of active S-boxes necessary to cause an internal collision using
the SAT method. For two constructions C3 and C5, the current lower bound on the
number of active S-boxes is increased, resulting in a more precise security analysis
for these two structures.
Keywords: Automatic cryptanalysis · differential characteristic · SKINNY-128 ·
PIPO · AES-based construction

1 Introduction
After more than a decade of development, automatic search techniques have become
an increasingly potent cryptanalysis tool. Search techniques based on mixed-integer
linear programming (MILP) [MWGP11, WW11] and Boolean satisfiability problem or
satisfiability modulo theories (SAT/SMT) [MP13] are two of the most popular. From
an early focus on differential and linear distinguishers [MWGP11, WW11, SHW+14b,
FWG+16, AST+17, MP13, KLT15, LWR16], the application of automatic tools has been
gradually expanded to include integral distinguishers [XZBL16, SWW17], polynomials
in cube attacks [TIHM17, WHG+19], and distinguishers in meet-in-the-middle attacks
[SSD+18, BDG+21], etc.

Automatic methods for differential and linear characteristic search are currently well-
established. Typically, the designers of novel ciphers also provide preliminary analytical
results for analysing the differential and linear properties via automatic approaches.
However, neither MILP-based nor SAT/SMT-based approaches have yet completely solved

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-11-23 Accepted: 2023-01-23 Published: 2023-03-10

https://doi.org/10.46586/tosc.v2023.i1.111-151
mailto:lingsun@sdu.edu.cn
mailto:mqwang@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

112 SoK: Modeling for Large S-boxes

the challenge of searching for true differential and linear characteristics of ciphers with
large S-boxes.

Abdelkhalek et al. [AST+17] investigated the differential distribution table (DDT)
of large S-boxes and provided the first method for constructing MILP models for large
S-boxes in the development of MILP modelling. The new approach was implemented on
SKINNY-128 [BJK+16] and two AES-based constructions in [JN16]. The upper bound on
differential probability for 14 rounds of SKINNY-128 is not completely resolved due to
the extremely lengthy runtime of the MILP optimiser. While the minimum number of
differential active S-boxes for one AES-based construction is raised, the precise lower bound
on the number of active S-boxes is not entirely known. Despite the fact that Abdelkhalek
et al. made it possible to describe large S-boxes, the model for the ∗-DDT, which is a
reduced version of the DDT in which all non-zero entries are replaced by one, of the S-box
in AES consists of 8302 linear inequalities, which is sometimes too complicated for practical
applications. To tackle this issue, Boura and Coggia [BC20] proposed two strategies for
constructing efficient algorithms for modelling 8-bit S-boxes with the minimum amount
of linear inequalities. Notably, the enhanced MILP models for the S-boxes of AES and
SKINNY-128 are not used to search for differential characteristics of the two ciphers.

In the SAT/SMT modelling development, Ankele and Kölbl [AK18] stated that their
S-box modelling technique was applicable to 8-bit S-boxes; yet, all of the ciphers analysed
in the study use 4-bit S-boxes. The SMT model suggested by Liu et al. [LLL+19] can
manage 8-bit S-boxes. The authors used their model to investigate the security of AES
and SKINNY-128 against the impossible differential attack; once again, the differential
probability of the two ciphers is not taken into account.

Motivated by resolving the aforementioned unsolved issues pertaining to SKINNY-128
and AES-based constructions, we want to identify a way for efficiently creating SAT models
of large S-boxes.

Our contributions. After examining the evolution of MILP and SAT/SMT modelling
techniques, we see that the search for actual differential and linear characteristics for
ciphers with large S-boxes is not conclusive. We intend to provide effective ways for
generating SAT models for large S-boxes.

Three strategies for creating SAT models for large S-boxes oriented to differential
probabilities and linear correlations are proposed. Although these methods cannot ensure
a minimum model size, the time required to obtain models is greatly decreased. The three
tactics are summarised in the following.

1. Since developing SAT models for S-boxes is equal to finding a simplification of a given
Boolean function, we attempt to strike a balance between the degree of simplification
and the runtime. The first strategy utilises the option of the ESPRESSO logic
minimizer [BHH+82, BHMS84], which is an algorithm used to simplify Boolean
functions.

2. Noting that the complexity of simplification rises exponentially with the number of
input variables of the given Boolean function, we attempt to lower the size of the
function that ESPRESSO delivers. The primary concept of the second technique is to
divide the description of a big S-box into two steps, so transforming the simplification
of large-scale Boolean functions into the simplification of two relatively small-scale
functions.

3. In the test, we observe that simplification of a large-scale function is not difficult
if the number of terms is not extremely enormous. This discovery motivates the
partitioning mechanism of third strategy. Specifically, the target n-bit Boolean
function f is subdivided into many n-bit functions f0, f1, . . ., and fℓ−1, where ℓ is

Ling Sun and Meiqin Wang 113

an integer, so that the conjunction
ℓ−1∧
i=0

fi is identical to f . Then, the simplification

of f is converted into the simplification of f0, f1, . . ., and fℓ−1, hence accelerating
the production of the SAT model.

SKINNY-128 is used to evaluate the three strategies. Numerous SAT models are applied
to calculate the upper bound of differential probability for SKINNY-128 from 1 to 14 rounds.
After analysing all the test results, we believe that the first encoding technique achieves
a good compromise between the runtime of ESPRESSO and the execution time of the
SAT solver. The test results also reveal that lowering the number of constraints in SAT
problems does not necessarily reduce the execution time of the SAT solver, echoing the
observation made by Sasaki and Todo [ST17] in the MILP approach. In addition, we
empirically demonstrate that reducing the number of variables in SAT problems does not
always reduce the execution time of the SAT solver.

The newly presented SAT model for large S-boxes lets us to demonstrate that the
upper bound on the differential probability for 14 rounds of SKINNY-128 is 2−131, thereby
completing the failed work of Abdelkhalek et al. Additionally, the related-key differential
properties of both versions of PIPO [KJK+20] are investigated. For PIPO-128, we identify
1792 full-round characteristics with a probability of 2−24, extending the findings of Yadav
and Kumar [YK21]. For PIPO-256, we are the first to report full-round differential
characteristics.

The encoding approach for large S-boxes is applied to seven AES-based constructions
C1 - C7 devised by Jean and Nikolić [JN16]. The SAT method is used to calculate the
minimum number of active S-boxes required to induce an internal collision. The test
results for all seven constructions, ranging from two to eight stages, are shown in Table 9.
For two constructions C3 and C5, the current lower bound on the number of active S-boxes
is increased, resulting in a more precise security analysis for these two structures. For
C1, C2, C4, and C6, we validate the previously determined lower bound for the number
of active S-boxes. In addition, all differential patterns for C1 - C5 that have a minimum
number of active S-boxes are supplied.

Outline. The remainder of the paper is structured as follows. In Section 2, notations and
knowledge related to the automatic search method are presented. Section 3 is devoted
to discussing the MILP modelling work for large S-boxes, while Section 4 discusses the
SAT modelling progress for large S-boxes. In Section 5, we propose three efficient methods
for building SAT models for large S-boxes. In Section 6, the newly suggested encoding
techniques are implemented on SKINNY-128, and their performance is compared. Based
on the outcome of the test around SKINNY-128, we recognise that the first modelling
technique is superior, and it is subsequently implemented in the studies of PIPO and seven
AES-based constructions in Sections 7 and 8, respectively. Section 9 is the conclusion of
the paper. Supplementary Material of this paper can be found at https://github.com/
SunLing134340/Large-Sbox-Supplementary-Material.

2 Preliminary
In this part, after presenting the notations used throughout the work, we will review two
standard ways for simplifying Boolean functions.

2.1 Notations
The Hamming weight of a vector x = (x0, x1, . . . , xn−1) ∈ Fn2 , indicated by wt(x), is the

number of non-zero elements in x, i.e., wt(x) =
n−1∑
i=0

xi. A vector may be represented

https://github.com/SunLing134340/Large-Sbox-Supplementary-Material
https://github.com/SunLing134340/Large-Sbox-Supplementary-Material

114 SoK: Modeling for Large S-boxes

in binary representation, decimal representation, and hexadecimal representation; we
utilise three fonts to differentiate between these representations: sans serif font for binary
representation, roman typeface for decimal representation, and typewriter font for
hexadecimal representation. Consequently, 1011, 11, and 0xb represent the same vector in
this study.

The support of x, indicated by supp(x), is the set of coordinates of elements in x that
are non-zero, i.e., supp(x) = {i ∈ [0, n− 1] | xi = 1}. Given a Boolean function f over
Fn2 , the support of f , represented as supp(f), is the set of vectors in Fn2 , for which f is
non-zero, i.e., supp(f) = {x ∈ Fn2 | f(x) = 1}.

2.2 Sum of Products and Product of Sums
For an n-variable Boolean function over x = (x0, x1, . . . , xn−1), a conjunction in which each
of the n variables appears once (either in its complemented or uncomplemented form) is
known as a minterm, i.e., it is a logical expression of n variables using just the complement
operator (·)1 and the conjunction operator (∧). For n variables, there are in total 2n

minterms. For u = (u0, u1, . . . , un−1) ∈ Fn2 , the minterm
n−1∧
i=0

xi ⊕ ui is represented by

mu(x). Note that xi ⊕ ui equals xi if ui = 0, and xi otherwise. Also note that mu(x) = 0
if and only if x = u. Based on the notion of minterm, the canonical sum of products (SOP)
form of f is

f(x) =
∨

u∈supp(f)

mu(x).

When the output of f is true, minterms are included in the canonical SOP, which is also
referred to as the sum of minterms.

A maxterm over n Boolean variables is defined as a disjunction (∨) where each of the
n variables occurs once (either in its complemented or uncomplemented form). There

are 2n maxterms over n variables. Denote the maxterm
n−1∨
i=0

(xi ⊕ ui) for the vector

u = (u0, u1, . . . , un−1) as Mu(x). The canonical product of sum (POS) form of f is

f(x) =
∧

u∈supp(f)

Mu(x), (1)

where supp(f) = {x ∈ Fn2 | f(x) = 0} represents the complement of the support for the
n-bit Boolean function f . It can be seen that Mu(x) = 0 if and only if x = u. Therefore,
the creation of the canonical POS of f may be seen as the elimination of any vector over
which f is false.

For a given function in canonical SOP or POS form, computing the minimum SOP or
POS form, which implies the minimum number of disjunctions or conjunctions, is a well-
researched issue in the design of digital logic gate circuits. Two conventional simplification
techniques will be discussed in Sections 2.4 and 2.5, as they are closely related to our
newly suggested encoding methods for large S-boxes in Section 5.

2.3 SAT Problem and POS Form Simplification
Mouha and Preneel [MP13] initiated the use of Boolean satisfiability problem (SAT) and
satisfiability modulo theories (SMT) as a supporting tool in symmetric-key cryptography.
The fundamental concept is to model the distinguisher searching issue in cryptanalysis as

1Note that the complement can only be applied to variables.

Ling Sun and Meiqin Wang 115

an SAT/SMT problem that can be addressed by SAT/SMT solvers such as STP [GD07]
and Cryptominisat [SNC09].

All variables taken into account in the SAT problem are binary. A Boolean equation is
a clause if it is a disjunction (∨) of one or more (possibly negated) Boolean variables; a
Boolean formula is in conjunctive normal form (CNF) if it is a conjunction (∧) of one or
more clauses. The CNF format is the input format that practically all SAT solvers claim
to support. The essential step for the automatic search is thus to express the distinguisher
searching issue using the CNF formula.

Since the SAT problem is NP-complete, all available solvers are only able to address
problems of practical magnitude. The performance of the SAT solver may be affected
if the SAT issue has an excessive number of clauses. As a result, reducing the number
of clauses in the CNF format is a common issue when creating SAT problems regarding
distinguisher search issues, particularly when constructing SAT models for S-boxes. It is
observable that the CNF format of the SAT problem resembles the canonical POS form of
a Boolean function. Prior research [AST+17, SWW18] has demonstrated that the POS
simplification approach may be used to simplify the CNF format of the SAT problem.

2.4 Quine-McCluskey Algorithm
For a given function, the Quine-McCluskey algorithm is used to calculate the minimum SOP
or POS. Quine [Qui52, Qui55] devised the method, while McCluskey [McC56] expanded
upon it. The Quine-McCluskey method, whether dealing with SOP or POS, acts on
the vector u in the minterm mu(x) or the maxterm Mu(x) and is independent of the
operator between variables. In the description that follows, we use the simplification of the
SOP form as an illustration and remark that the simplification of the POS form may be
accomplished in a similar manner. The Quine-McCluskey algorithm consists of two phases.

Table 1: Finding prime implicants of ft.

Group Minterm Size 2 implicant Size 4 implicant

G0

0000 m0x0 (✓) 000∗ m0x0,m0x1 (✓) ∗00∗ m0x0,m0x1,m0x8,m0x9

- - 00∗0 m0x0,m0x2 (✓) ∗0∗0 m0x0,m0x2,m0x8,m0xa

- - ∗000 m0x0,m0x8 (✓) ∗00∗ m0x0,m0x8,m0x1,m0x9

- - - - ∗0∗0 m0x0,m0x8,m0x2,m0xa

G1

0001 m0x1 (✓) 0∗01 m0x1,m0x5 ∗∗10 m0x2,m0x6,m0xa,m0xe

0010 m0x2 (✓) ∗001 m0x1,m0x9 (✓) ∗∗10 m0x2,m0xa,m0x6,m0xe

1000 m0x8 (✓) 0∗10 m0x2,m0x6 (✓) - -
- - ∗010 m0x2,m0xa (✓) - -
- - 100∗ m0x8,m0x9 (✓) - -
- - 10∗0 m0x8,m0xa (✓) - -

G2

0101 m0x5 (✓) 01∗1 m0x5,m0x7 - -
0110 m0x6 (✓) 011∗ m0x6,m0x7 - -
1001 m0x9 (✓) ∗110 m0x6,m0xe (✓) - -
1010 m0xa (✓) 1∗10 m0xa,m0xe (✓) - -

G3
0111 m0x7 (✓) - - - -
1110 m0xe (✓) - - - -

□ Prime implicants of ft. □ Duplicated prime implicants.

116 SoK: Modeling for Large S-boxes

Phase 1: finding all prime implicants. We use the vector u to represent the minterm
mu(x) in this subsection for simplicity. In this phase, we attempt to merge two or more
minterms. If two minterms only vary by one bit, that bit may be substituted with an
asterisk (∗) to indicate that it is arbitrary. This allows two minterms to be represented by
a single string. As an example, two 4-bit minterms m0x1 and m0x5 may be combined to
get 0∗01, which is referred to as an implicant of size two since it represents two minterms
with no constraint on the second bit. Two implicants of size two may be merged further to
yield an implicant of size four. In this process, matching asterisks comes first. Then, two
implicants that vary by one bit in the remaining positions may be merged.

To locate all prime implicants, it is necessary to compare and combine all feasible
pairings of minterms wherever possible. Grouping minterms according to their Hamming
weight decreases the number of comparisons. Suppose the minterms of a given function
are split into ϱ groups G0,G1, . . . ,Gϱ−1, and the Hamming weight of minterms in group Gi
is i for 0 ⩽ i ⩽ ϱ− 1. Consequently, there is no need to compare minterms of nonadjacent
groups, since they will always vary in more than one variable. Similarly, comparing
minterms within one group is unnecessary as each minterm has the same Hamming weight
and any two minterms vary in at least two variables. Therefore, only the minterms of
neighbouring groups need to be compared.

A checkmark (✓) is placed next to a minterm after it has been coupled with another
minterm to signify that it has been included into an implicant. Thereafter, by merging
implicants of size two, implicants of size four are created. Once again, a checkmark is put
next to an implicant that may be paired with another implicant. In general, this procedure
should be repeated until no more implicant combinations can be made. After that, the
unchecked minterms and implicants are known as prime implicants. Since each minterm is
contained in at least one prime implicant, the original function equals the disjunction of
its prime implicants. Despite the fact that the canonical SOP has been reduced to some
degree, the outcome is often not the minimum SOP. To do this, we should complete the
second phase. Example 1 provides a tiny illustration of this phase.

Phase 2: determining the minimum SOP. First, a prime implicant chart is constructed
in this phase. Along the side are the newly created prime implicants, and along the top
are the minterms of the supplied function. If the prime implicant in the row covers the
minterm in the column, the symbol (I) is inserted into the table cell. Then, we search
for columns containing a single symbol (I). If a column contains just one symbol, the
minterm can only be covered by a single prime implicant, which is termed as an essential
prime implicant. The minimum SOP expression must include all essential prime implicants.
In certain instances, the essential prime implicants do not cover all minterms, necessitating
the use of extra chart reduction processes. Petrick’s method [Pet56] should be a more
methodical approach, as opposed to trial and error. Using Petrick’s approach, all minimum
SOP solutions are derived from a prime implicant chart. This methodology is described
algorithmically in Algorithm 1.
Remark 1. Boura and Coggia [BC20] offered a novel formulation for the first phase of the
Quine-McCluskey algorithm. By substituting the second phase of the Quine-McCluskey
algorithm with a minimisation problem in MILP, an improved algorithm for creating
MILP models for S-boxes was created. Although the MILP optimiser does not always
find the optimal solution, the output provided by the optimiser might be satisfactory. See
Section 3.3.1 and [BC20] for more information.

We present a tiny example to easily comprehend the Quine-McCluskey algorithm.

Example 1. The target is a 4-bit Boolean function ft, and the support is supp(ft) =
{0x0, 0x1, 0x2, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xe}. Therefore, the canonical SOP form of ft
contains ten minterms. As shown in Table 1, the Hamming weight is used to classify the

Ling Sun and Meiqin Wang 117

Algorithm 1 Petrick’s method
1: Delete the rows for essential prime implicants and their associated columns with the

symbol (I) to reduce the size of the prime implicant chart.
2: Mark the rows of the reduced prime implicant chart as P0, P1, P2, etc.
3: Create a logical function P consisting of the conjunction of disjunctions. Each disjunc-

tion relates to a column, and the i-th disjunction is (Pi0 ∨ Pi1 ∨ · · · ∨ Pik), where each
Pij represents a row covering the i-th column.

4: Multiply out the function P and use the absorption rule Pi ∨ (Pi ∧ Pj) = Pi to reduce
it to a minimum SOP. Each term in the reduced expression corresponds to a set of
prime implicants including all the minterms in the reduced prime implicant chart.

5: Find each term of the reduced expression of P that has the smallest number of prime
implicants. For each term containing a minimum number of prime implicants, count
the number of variables in each prime implicant and calculate the overall number of
variables.

6: Choose the term or terms that include the minimum total variables and write down
the conjunction of prime implicants that corresponds.

minterms into four groups G0, G1, G2, and G3. To generate implicants of size two, we
begin with group G0 and compare all of its minterms to those of group G1. m0x0 and m0x1
may be joined to generate 000∗ by replacing the final bit with an asterisk. A checkmark
(✓) is then put next to the two minterms to indicate that they have been included into an
implicant. m0x0 and m0x2 are then joined to make 00∗0, and m0x0 and m0x8 form ∗000.
After repeating this process for (G1,G2) and (G2,G3), we get a list of implicants with a
size of two.

Subsequently, implicants of size four are derived by merging implicants of size two, and
the result can be found in Table 1. Again, a checkmark (✓) is put next to an implicant
when it may be paired with another implicant. In this example, no more combinations
of implicants of size four are possible. Note that three implicants with a size of four are
duplicates generated by merging the same set of four minterms in different orders. The
following analysis will not include duplicates. From Table 1, we observe that ft has six
prime implicants: 0∗01, 01∗1, 011∗, ∗00∗, ∗0∗0, and ∗∗10.

Table 2: Prime implicant chart of ft.
HHH

HHH
HHH

Prime
implicant

Minterm
m0x0 m0x1 m0x2 m0x5 m0x6 m0x7 m0x8 m0x9 m0xa m0xe

0∗01 - I - I - - - - - -
01∗1 - - - I - I - - - -
011∗ - - - - I I - - - -
∗00∗ I I - - - - I I - -
∗0∗0 I - I - - - I - I -
∗∗10 - - I - I - - - I I

□ Essential prime implicant rows.
□ Minterm columns covered by essential prime implicants.

With the prime implicants, the prime implicant chart of ft can be constructed (cf.
Table 2). Observe that the columns m0x9 and m0xe only contain a single symbol (I).
∗00∗ and ∗∗10 are hence two essential prime implicants. Table 3 displays the reduced
prime implicant chart for ft, which is derived by deleting the two essential prime implicant

118 SoK: Modeling for Large S-boxes

rows and the corresponding columns with the symbol (I). The three rows in Table 3 are
designated P0, P1, and P2 respectively. According to Algorithm 1, the logical function P
is generated as

P = (P0 ∨ P1) ∧ (P1 ∨ P2) = (P0 ∧ P1) ∨ P1 ∨ (P0 ∧ P2) ∨ (P1 ∧ P2) = P1 ∨ (P0 ∧ P2).

Consequently, P1 (01∗1), which corresponds to the expression x0 ∧ x1 ∧ x3, is the term of
P having the fewest prime implicants. Together with the two essential prime implicants
∗00∗ and ∗∗10, the minimum SOP for ft should be

ft(x) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x0 ∧ x1 ∧ x3)

Table 3: Reduced prime implicant chart of ft.
HH

HHHH
HHH

Prime
implicant

Minterm
m0x5 m0x7

P0 0∗01 I -
P1 01∗1 I I

P2 011∗ - I

2.5 ESPRESSO Logic Minimizer
The Quine-McCluskey method makes the creation of all prime implicants (Phase 1) more
efficient. The number of prime implicants of an n-bit logic function, however, may be
proven to equal O(3n/n). In addition, the second phase attempts to solve a minimum
covering problem that is known to be NP-complete. Since the number of components
in the covering issue may be proportional to the exponential of the number of input
variables of the logic function, the Quine-McCluskey approach becomes unworkable for
even moderately large situations. For instance, Abdelkhalek et al. [AST+17] failed to
implement the Quine-McCluskey method to reduce a 16-bit function pertaining to AES
[DR02]. Various heuristic approaches to the issue were prompted by the need to simplify
large-scale functions.

These heuristic procedures use two routes. One method utilises the structure of the
traditional method by first producing all prime implicants. However, rather than creating
a minimum cover, a near minimum cover is heuristically determined. This approach still
has the potential to produce a very large quantity of prime implicants. The second method
attempts to simultaneously detect and choose implicants (who are not necessarily prime)
for the cover. A lot of follow-up work centered on the second approach, and the first and
most successful was the IBM programme MINI [HCO74]. Later, Brown [Bro81] proposed
a method called PRESTO. The core of MINI and PRESTO is expanding each implicant
of the supplied function and eliminating implicants that are covered by the expanded
implicant. MINI expands each implicant to its maximum size both in the input and
output parts of the function. PRESTO expands the input part of each implicant to its
maximum size, but then reduces the output parts of the implicants maximally by removing
the implicants from as many output spaces as possible. In both methods, implicants
are expanded and covered, and thus handling the problem of creation and storage of all
minterms.

Nonetheless, this primary technique results in a local minimum that may be far off
from the global minimum. In order to prevent this issue, following the first expansion and
removal of covered implicants, MINI reduces the remaining implicants to their smallest size

Ling Sun and Meiqin Wang 119

while preserving the cover of the function. The implicants are then assessed in pairs for
reshaping, with one implicant being enlarged and the other being reduced by the same set
of minterms. The expansion process is then resumed, and the whole method is repeated
until there is no further decrease in the number of product terms. This metric enables
the investigation of wider portions of the optimisation space, with the goal of achieving
better results at the cost of increased computation time. PRESTO differs from MINI
in the way the expansion process is carried out. MINI generates the complement of the
logic function to check is the expansion of an implicant does not change the cover of the
function. PRESTO avoids the initial cost of computing the complement, but then the
input expansion process requires a check on whether all the minterms covered by the
expanded implicant are covered by someother implicant of the cover, which, in general,
costs more computation time.

Comparing the different tactics adopted by MINI and PRESTO in a specific context
inspired the development of ESPRESSO. The first version ESPRESSO-I was created by
Brayton et al. at IBM [BHH+82]. ESPRESSO-I can enhance some of the algorithms
employed by MINI and PRESTO due to its experimenting with logic modification. On
the basis of comparisons and improved algorithms from ESPRESSO-I, ESPRESSO-II
[BHMS84] was developed; it essentially follows the sequence of top-level transformations of
iterated expansion-reduction pioneered by MINI. ESPRESSO has been implemented as a
regular minimisation step for logic functions into practically all modern logic synthesis tools.
An algorithmic description for ESPRESSO logic minimizer can be found in Algorithm 2. A
modern compiliable re-host of the original source code can be found at https://github.
com/classabbyamp/espresso-logic.

Algorithm 2 ESPRESSO logic minimizer
1: [Complement] Compute the complement of the function.
2: [Expand] Expand each implicant into a prime and remove covered implicants.
3: [Extract] Extract essential prime implements and store them in a set.
4: [Irredundant Cover] Find a minimal (optionally minimum) irredundant cover.
5: [Reduce] Reduce each implicant to a minimum essential implicant.
6: [Iterate] Iterate [Expand], [Irredundant Cover], and [Reduce] until no improvement.
7: [Lastgasp] Try [Reduce], [Expand], and [Irredundant Cover] one last time using a

different strategy. If successful, continue the iteration.
8: [Makesparse] Include the essential prime implicant back into the cover and make the

output as sparse as possible.

3 MILP Modelling Progress for Large S-boxes
In this part, we review the progress made in the MILP modelling of large S-boxes.

3.1 First Bit-Oriented Model for S-boxes
Sun et al. [SHW+14b] proposed the first bit-oriented model in the search with MILP
approach. Each bit of the inner state should have a binary variable allocated to it. The
simplest model for an S-box is to describe its ∗-DDT, which is a reduced form of the DDT
in which all non-zero entries are substituted with 1. In this model, we are solely concerned
with the feasibility of differential propagation, and a propagation is deemed feasible if its
corresponding item in ∗-DDT equals 1. With this notation, two sets

F = {x∥y | x→ y is a possible propagation,x,y ∈ Fn2 } ,
I = {x∥y | x→ y is an impossible propagation,x,y ∈ Fn2 }

(2)

https://github.com/classabbyamp/espresso-logic
https://github.com/classabbyamp/espresso-logic

120 SoK: Modeling for Large S-boxes

can be constructed for an n-bit S-box. ∗-DDT can be modelled by employing linear
inequalities to either characterise all vectors in F or exclude all vectors in I. These two
ideas correspond to the two approaches proposed in [SHW+14b].

3.1.1 H-representation of the Convex Hull

Note that F is a subset of R2n, where R is the real number field, and that its convex hull
is defined as the smallest convex set that contains F . A convex hull can be represented
as the common solutions of a finite number of linear inequalities; this is known as the
H-representation of a convex hull. Using the inequality_generator() function in the
sage.geometry.polyhedron class of the open-source mathematical software SageMath2

[The22], it is possible to derive the convex hull. Given that the number of inequalities in
the H-representation of a convex hull is typically quite high, Sun et al. developed a greedy
technique to reduce the number of inequalities. The greedy algorithm builds a collection of
valid cutting-off inequalities by picking at each step an inequality from the convex hull that
maximises the number of impossible differential propagations removed from the current
feasible region.

3.1.2 Logical Condition Modelling

The main idea of logical condition modelling is that CNF/POS formulas are directly
expressible as inequalities in MILP. This method may be thought of as focusing on the
set I and generating linear inequalities to eliminate impossible differential propagations
one by one. Specifically, for every vector a∥b = a0∥ · · · ∥an−1∥b0∥ · · · ∥bn−1 in the set I,
an inequality about 2n Boolean variables x∥y = x0∥ · · · ∥xn−1∥y0∥ · · · ∥yn−1 is generated

n−1∑
i=0

(−1)ai · xi +
n−1∑
i=0

(−1)bi · yi +
n−1∑
i=0

ai +
n−1∑
i=0

bi ⩾ 1. (3)

Only when x∥y = a∥b does the inequality become invalid. Applying this method directly
will yield an excessive amount of inequalities. To overcome this issue, Sun et al. found
that certain S-boxes contain conditional differential features, allowing us to rule out many
impossible propagations with a single inequality. If the input difference of the 4-bit S-box
of PRESENT [BKL+07] is 0x9, for example, the least significant bit of the output difference
must be 0. Then, eight impossible propagations 1001 ↛ ∗∗∗1 are eliminated by the linear
inequality −x0 +x1 +x2−x3−y3 +2 ⩾ 0. However, such conditional differential properties
do not present in all circumstances.

When transitioning from ∗-DDT to DDT in a model, additional variables must be
included to encode differential probabilities. [SHW+14a] provides an example of how to
describe the differential probability of the S-box of PRESENT. Observe that all applications
in [SHW+14b, SHW+14a] are ciphers with at most 6-bit S-boxes. [SHW+14a] also stated
that the MILP model is mostly applicable to lightweight ciphers. In [SGL+17], the authors
claim unequivocally that the MILP method is incapable of searching for true differential
characteristics of 8-bit S-box ciphers.

3.2 Modelling for Large S-boxes
In response to the limitations of previous MILP models for large S-boxes, Abdelkhalek et
al. [AST+17] suggested a novel modelling method for large S-boxes oriented to ∗-DDT
and differential probabilities. The new method is founded on logical condition modelling
introduced in Section 3.1.2, in which the number of linear inequalities is minimised or kept
as small as possible.

2Note that SageMath is a front-end software. The method comes from the classic literature [GKPS67,
Bro83, Zie07, GO04].

Ling Sun and Meiqin Wang 121

3.2.1 Modelling ∗-DDT of Large S-boxes

The technique commences with a description of ∗-DDT. A 2n-bit Boolean function f is
built using the ∗-DDT, and f(x∥y) equals one if and only if x∥y ∈ F = F2n

2 \ I. The
canonical POS form of f is

f(x∥y) =
∧

a∥b∈I

(
n−1∨
i=0

(xi ⊕ ai) ∨
n−1∨
i=0

(yi ⊕ bi)
)
.

Observe that f(x∥y) is non-zero only when for all a∥b ∈ I, the following expression about
x∥y holds

n−1∨
i=0

(xi ⊕ ai) ∨
n−1∨
i=0

(yi ⊕ bi) = 1 (4)

Since 1-bit XOR xi⊕ai can be represented as xi+ai−2 ·xi ·ai, the equation in Equation (4)
is identical to the expression in Equation (3). In contrast to the technique employed in
[SHW+14b] to reduce the number of inequalities by monitoring conditional differential
characteristics, Abdelkhalek et al. asserted that lowering the number of inequalities is akin
to simplifying the POS form of f , a well-studied subject. The Quine-McCluskey algorithm
can be used to determine the minimum POS, which ensures the minimum number of linear
inequalities under logical condition modelling. Since the algorithm becomes inapplicable for
even moderately large problems, Abdelkhalek et al. were unable to apply it for reducing a
16-bit function corresponding to the ∗-DDT of AES. In this instance, the heuristic algorithm
ESPRESSO was suggested for simplifying large-scale functions so that the number of linear
inequalities is maintained as small as possible.

3.2.2 Modelling DDT of Large S-boxes

Abdelkhalek et al. split the entries of a DDT into numerous pieces in order to encode
the differential probability and control the scale of the Boolean function, from which the
concept of p-DDT is generated.

Definition 1 (p-DDT, [AST+17]). For a given S-box and its DDT, the corresponding
entry of the p-DDT is one if the probability of entry in the DDT is p; otherwise, it is zero.

By applying the approach to model ∗-DDT, one set of linear inequalities Lp is obtained
for each p-DDT, where

Lp =
{
n−1∑
i=0

a
⟨p|j⟩
i · xi +

n−1∑
i=0

b
⟨p|j⟩
i · yi ⩾ c⟨p|j⟩, j = 0, 1, . . . , ℓp − 1

}
,

and ℓp represents the number of linear inequalities for describing the p-DDT. In addition,
a binary variable Qp is allocated to each p-DDT to determine if the linear inequalities
in Lp should be included in the solution phase. Specifically, the linear inequalities in Lp
are only applicable when Qp = 1, and they are disregarded otherwise. This technique is
realised by adding a suitably large integer3 M and transforming each linear inequality in
Lp into a conditional inequality as

n−1∑
i=0

a
⟨p|j⟩
i · xi +

n−1∑
i=0

b
⟨p|j⟩
i · yi +M(1−Qp) ⩾ c⟨p|j⟩.

3M = 2n is enough.

122 SoK: Modeling for Large S-boxes

When Qp = 0, x∥y can take any value; otherwise, the conditional constraint reverts to the
original linear inequality. To ensure that the automatic searching model imposes no more
than one set of linear inequalities for a certain p-DDT, no more than one Qp may take on
a non-zero value. Consequently, an additional binary variable Q is allocated to each S-box,
and Q = 1 if and only if the S-box is active. The constraint

Q =
∑
p

Qp

establishes the restriction for Qp. Consequently, the base-2 logarithm of the differential
probability for a single S-box is calculated to be∑

p

log2(p) ·Qp.

3.3 Efficient Modelling for Large S-boxes
Despite the fact that Abdelkhalek et al. enabled the description of large S-boxes, the model
for the ∗-DDT of the S-box in AES consists of 8302 linear inequalities, which is sometimes
too cumbersome for practical usage. Boura and Coggia [BC20] offered two methods for
developing efficient algorithms for modelling 8-bit S-boxes with the fewest number of linear
inequalities. These approaches are conceptually related to logical condition modelling (cf.
Section 3.1.2), in which an inequality is generated to eliminate an impossible vector. The
contrast lies in the fact that the new approaches aim to remove more impossible vectors,
which often possess algebraic structures, using a single inequality.

3.3.1 Generalised Logical Condition Modelling

Given a vector u ∈ Fm2 , the set {x ∈ Fm2 | x ⪯ u} is denoted as Prec(u), where x ⪯ u
means that xi ⩽ ui for all 0 ⩽ i ⩽ m− 1. The first method derives simple inequalities to
eliminate vector spaces of the type a⊕ Prec(u) using the following proposition.

Proposition 1 ([BC20]). For two vectors a and u in Fm2 satisfying supp(a)∩supp(u) = ∅,
denote E as the set {0, 1, . . . ,m− 1}\(supp(a) ∪ supp(u)). Then, for all x ∈ Fm2 ,

−
∑

i∈supp(a)

xi +
∑
i∈E

xi +
m−1∑
i=0

ai ⩾ 1 if and only if x /∈ a⊕ Prec(u).

Algorithm 2 in [BC20] determines, given the set of impossible propagations I (cf.
Equation (2)), all subsets of the type a⊕ Prec(u) that are not subsets of others. For each
a ∈ I, spaces a ⊕ Prec(u) ⊂ I are generated by incrementally increasing the weight of
u, where u should satisfy a⊕ u ∈ I and supp(a) ∩ supp(u) = ∅, and determining, for all
v ⪯ u and wt(v) = wt(u)− 1, if a⊕Prec(v) has previously been designated as a subset of
I. This algorithm, according to Boura and Coggia, is closely connected to the first step of
the Quine-McCluskey algorithm. By applying this algorithm, an initial set of inequalities is
constructed, with a total of 70336 for the ∗-DDT of AES. To select a representative set from
the initial inequalities, Boura and Coggia formulated a minimisation problem in MILP
according to the method described in [ST17] (cf. Section 3.4.1) and solved it using the
Groubi optimiser [Gur22]. Although the optimiser did not achieve the minimum for the
S-box of AES even after more than twenty days, the solution supplied by the optimiser is
much superior than that returned by ESPRESSO in [AST+17]. The number of inequities
falls from 8302 to 7461.

Ling Sun and Meiqin Wang 123

3.3.2 Modelling S-boxes with Inequalities Issued from Balls

The second method creates inequalities to exclude points from a ball B(r, c) whose definition
is shown below.

Definition 2 ([BC20]). A ball of Fm2 of radius r centred at c ∈ Fm2 is the set of all
points whose Hamming distance from the center c is no more than r, i.e., B(r, c) =
{x ∈ Fm2 | wt(x⊕ c) ⩽ r}. Furthermore, the sphere S(r, c) of the ball B(r, c) is defined as
the set of points x ∈ B(r, c) with wt(x⊕ c) = r.

With the following proposition, all points in the ball B(r, c) may be eliminated.

Proposition 2 ([BC20]). For c ∈ Fm2 ,

m−1∑
i=0

(1− ci) · xi + ci · (1− xi) ⩾ r + 1 if and only if x /∈ B(r, c).

Since the set of possible propagations F (cf. Equation (2)) is not sparse for S-boxes
with a low differential uniformity, the number of balls consisting purely of impossible
propagations is normally rather modest, therefore deleting complete balls is frequently
ineffective. In this instance, it is feasible to create distorted balls in which any possible
propagations at the sphere are eliminated. The following proposition provides instructions
for making distorted balls.

Proposition 3 ([BC20]). Let B(r, c) ⊂ Fm2 be a ball of radius r from which we remove
the set of points Q = (c⊕ Prec(q)) ∩ S(r, c) for some q ∈ Fm2 . The vectors in Q represent
possible propagations towards the sphere of the ball. We define a ∈ Qm, where Q is the
rational number field, so that ai = r+1

r if qi = 1 and ai = 1 otherwise. Then,

m−1∑
i=0

ai [(1− ci) · xi + ci · (1− xi)] ⩾ r + 1 if and only if x /∈ B(r, c)\Q.

Boura and Coggia proposed a way to remove all points from three distorted balls with a
radius of one using a single inequality in order to obtain better candidates for the initial set
of inequalities; this innovative notion is used in Algorithm 3 of [BC20]. After constructing
an initial set of inequalities with Algorithm 3, a minimisation problem in MILP is created
which is then resolved by the Groubi optimiser. The number of inequalities reaches 2882,
despite the fact that the optimisation for the S-box of AES did not terminate after a few
days. In terms of the amount of inequalities, the proposed solution is considerably superior
to the ESPRESSO-simplified version [AST+17]. Notably, despite the creation of improved
MILP models for the S-boxes of AES and SKINNY-128, these models are not employed
to analyse the differential characteristics of the two ciphers. The authors used the new
models to investigate the resistances of the two ciphers against the impossible differential
attack [BBS99].

3.4 Modelling by Minimum Number of Inequalities
Whether reducing the number of inequalities for the S-box can reduce the runtime to solve
the MILP problem is a debate from the pioneer work [SHW+14b, SHW+14a]. As a result,
modelling S-boxes with the fewest inequalities is a hot topic for research in the area of
automatic search. Numerous studies have been conducted to investigate this matter.

124 SoK: Modeling for Large S-boxes

3.4.1 Reduction Algorithm for Small S-boxes Based on MILP

The research of Sasaki and Todo [ST17] is able to overcome the limitations of greedy
algorithm in terms of locating the fewest inequalities. This technique is derived from the H-
representation supplied by SageMath. Assume that the H-representation comprises ℏ linear
inequalities designated L0, L1, . . ., Lℏ−1. Selecting inequalities from the H-representation
is transformed into a MILP problem by the reduction algorithm.

For each inequality Li, the reduction method introduces one binary variable ℓi, i =
0, 1, . . . ℏ− 1. ℓi = 1 indicates that the inequality Li is employed in the reduced system,
whereas ℓi = 0 implies that Li is not used. Then, as in Equation (2), the set I of impossible
propagation is constructed. Assuming I consists of Λ vectors labelled I0, I1, . . ., IΛ−1. For
each vector Ij in I, the inequalities that can exclude Ij are computed, and the indices of the
inequalities that satisfy this requirement are arranged in the set Indexj ⊂ {0, 1, . . . , ℏ− 1}.
To guarantee that each impossible propagation is eliminated by at least one inequality, the
following Λ constraints ∑

i∈Indexj

ℓi ⩾ 1, for all 0 ⩽ j ⩽ Λ− 1

must be imposed to the MILP problem. By setting the objective function of the MILP

problem to minimise the value of
ℏ−1∑
i=0

ℓi, the least amount of inequalities is assured.

Sasaki and Todo demonstrated empirically, via the reduction algorithm, that minimising
the number of inequalities does not reduce the execution time of the MILP optimiser.

3.4.2 Finding Smallest MILP Models

Although minimising the number of inequalities does not always reduce the runtime of the
MILP optimiser, many subsequent studies continue to seek a breakthrough on the number
of inequalities. The task of discovering the smallest MILP models might be of theoretical
importance in its own right. For further detail, interested readers might see [LS22, Udo21].

4 SAT/SMT Modelling Progress for S-boxes
Mouha and Preneel [MP13] introduced the use of SAT/SMT in symmetric-key cryptog-
raphy for the search of distinguisher. Initially, this technique was used to ARX ciphers
[KLT15, LWR16, SHY16]. Two studies utilising the SAT/SMT approach to search for
differential characteristics appeared around the same time [AK18, SWW18]. [SWW21] is
also associated with the SAT-based search for differential characteristics. However, the
focus of the study was on modifying the objective function to achieve acceleration for the
SAT method, and the modelling for S-boxes adheres to the method described in [SWW18].

4.1 Logical Condition Modelling
The S-box modelling approach described by Ankele and Kölbl [AK18] is comparable to
the logical condition modelling using MILP method (cf. Section 3.1.2). The clause

n−1∨
i=0

(xi ⊕ ai) ∨
n−1∨
i=0

(yi ⊕ bi) = 1

is built for each vector a∥b = a0∥ · · · ∥an−1∥b0∥ · · · ∥bn−1 in I and then added to the SAT
problem. This expression is invalid if and only if x∥y = a∥b. Adding all clauses thereby
removes all impossible propagations. Although the authors claim that their approach is
compatible with 8-bit S-boxes, all of the ciphers analysed in [AK18] employ 4-bit S-boxes.

Ling Sun and Meiqin Wang 125

4.2 Logical Condition Modelling Using Simplification
Sun et al. [SWW18] suggested a modelling technique with simplification, which was
inspired by the work of Abdelkhalek et al. [AST+17] in MILP approach. We first review
the model oriented to active S-boxes.

4.2.1 Modelling Oriented to Active S-boxes

The model for linear active S-boxes is a natural extension of the model for differential
active S-boxes, which we apply as an example. Apart from 2n Boolean variables x =
(x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) to represent the input and output differences
of an n-bit S-box, there should be an auxiliary Boolean variable w. The value of w for
active S-boxes is one and zero for inactive S-boxes under the premise that x → y is a
possible propagation. Limiting the total number of active S-boxes for the differential
characteristic is equal to setting a maximum for the total sum of auxiliary variables for
all S-boxes in the characteristic. Pr(x → y) represents the differential probability of
propagation x→ y. According to this criteria, possible values for x∥y∥w fall into the set

F⟨n,n,1⟩ =

x∥y∥w

∣∣∣∣∣∣∣
x,y ∈ Fn2 , w ∈ F2,x→ y is a possible propagation

w =
{

0, if Pr(x→ y) = 1
1, if Pr(x→ y) < 1

 ,

where the three components in the subscript of F are, in order, the number of input bits of
the S-box, the number of output bits of the S-box, and the number of auxiliary variables
involved. The direct method removes impossible vectors one by one with clauses

n−1∨
i=0

(xi ⊕ τi) ∨
n−1∨
i=0

(yi ⊕ τn+i) ∨ (w ⊕ τ2·n) = 1, for all τ = (τ0, τ1, . . . , τ2·n) /∈ F⟨n,n,1⟩.

The number of clauses in the resulting SAT problem will be extremely high if the scale of
the set F2n+1

2 \F⟨n,n,1⟩ is enormous, which could negatively affect the performance of the
SAT solver. Finding a solution to reduce the clauses is thus necessary.

Sun et al. [SWW18] stated that the conjunction of |F2n+1
2 \F⟨n,n,1⟩| clauses is a canonical

POS form of the function

f⟨n,n,1⟩(x∥y∥w) =
{

1, if x∥y∥w ∈ F⟨n,n,1⟩

0, otherwise
,

drawing their inspiration from the idea in [AST+17]. Finding a simpler POS form of
f⟨n,n,1⟩ is the equivalent of lowering the amount of clauses, and this problem can be handled
using the Quine-McCluskey and ESPRESSO algorithms. Commercial tools, like Logic
Friday [Ric11] with ESPRESSO as the underlying program, can handle the simplification
for small-scale problems. Disjunctions decoded from the simplified POS form of f⟨n,n,1⟩ is
a SAT model focused on differential active S-boxes.

4.2.2 Modelling Oriented to Differential Probabilities and Linear Correlations

We only introduce modelling for differential probabilities because the methods for con-
structing SAT models for linear correlations and differential probabilities are comparable.
Note that additional auxiliary variables are required to encode probability information.
Given an n-bit S-box, we first construct a set P consisting of all probabilities for possible
differential propagation x → y. The weight of a possible propagation with a probabil-
ity of p is − log2(p) and can take on non-integer values. For non-integral weights, the
set D = {⌈log2(p)⌉ − log2(p) | log2(p) is not an integer, and p ∈ P } contains all feasible

126 SoK: Modeling for Large S-boxes

decimal values. Assume there are ν items in the set D, which are denoted by d0, d1,
. . ., dν−1. The plan is to introduce two groups of auxiliary variables that are used to
encode the integral and decimal components of the weight, respectively. To be precise,
max{⌊− log2(p)⌋ | p ∈ P } ≜ µ variables (u0, u1, . . . , uµ−1) ≜ u are introduced for the inte-
gral portion and ν variables (v0, v1, . . . , vν−1) ≜ v are introduced for the decimal portion.
Similarly to the scenario concerning active S-boxes, we subsequently determine the possible
values for the vector x∥y∥u∥v. If x→ y is a possible propagation with a probability of p,

then x∥y∥u∥v assignments must fulfil the equation
µ−1∑
i=0

ui +
ν−1∑
i=0

di · vi = − log2(p). An

optional set of possible values for x∥y∥u∥v is

F⟨n,n,µ+ν⟩ =

x∥y∥u∥v

∣∣∣∣∣∣∣∣∣∣∣∣∣

x,y ∈ Fn2 ,u ∈ Fµ2 ,v ∈ Fν2
x→ y is a possible propagation with probability being p
u = 0∥0∥ · · · ∥0∥ 1∥1∥ · · · ∥1︸ ︷︷ ︸

⌊− log2(p)⌋ bits

v =
{

0∥0∥ · · · ∥0, if − log2(p) is an integer
el, if ⌈log2(p)⌉ − log2(p) = dl ∈ D

,

where el is a unit vector in Fν2 and the l-th bit is the only non-zero bit. Again, F⟨n,n,µ+ν⟩
can be considered as the support of the function

f⟨n,n,µ+ν⟩(x∥y∥u∥v) =
{

1, if x∥y∥u∥v ∈ F⟨n,n,µ+ν⟩

0, otherwise
.

The SAT model for differential probabilities can be derived by simplifying the canonical
POS form of f⟨n,n,µ+ν⟩.

Example 2. Consider a 4-bit S-box whose DDT contains the values 0, 2, 4, 6, and
16. The corresponding set of probability for all feasible differential propagations is
{2−3, 2−2, 2−1.415, 1}. Thus, we claim three variables (u0, u1, u2) ≜ u to represent the
integral portion of the weight and one variable v0 to represent the decimal portion of the
weight. The optional set of possible values for x∥y∥u∥v0 is

x∥y∥u∥v0

∣∣∣∣∣∣∣∣∣∣∣

x,y ∈ F4
2,u ∈ F3

2, v0 ∈ F2,x→ y is a possible propagation

u∥v0 =

1∥1∥1∥0, if Pr(x→ y) = 2−3

0∥1∥1∥0, if Pr(x→ y) = 2−2

0∥0∥1∥1, if Pr(x→ y) = 2−1.415

0∥0∥0∥0, if Pr(x→ y) = 1

.

The vector in the set confirms the equation u0 + u1 + u2 + 0.415 · v0 = − log2(p) for a
possible propagation x→ y with a probability of p.

4.3 SMT Modelling for Large S-boxes
Note that the modelling techniques described in [AK18, SWW18] mostly apply to ciphers
with 4-bit S-boxes. Liu et al. [LLL+19] were the first to introduce the SMT modelling
technique for 8-bit S-boxes. The effectiveness of SMT modelling is dependent on the
reasoning statement supplied by the SMT solver STP [GD07].

In addition to two n-bit vectors x and y representing the input and output differences
of the S-box, the SMT model requires a 1-bit vector w for the search of valid differential
characteristics. The reasoning statement

ASSERT ((x = a) && (y = b) => (w = 1))

Ling Sun and Meiqin Wang 127

is added to the SMT model for each vector a∥b in F where a→ b represents a possible
propagation. This phrase specifies that w is assigned the value 1 if x∥y is a member of
the set F . Then, for each vector a∥b in I, the reasoning statement

ASSERT ((x = a) && (y = b) => (w = 0))

is added to the SMT model, resulting in w = 0 if x∥y takes values from the set I. The
SMT model also asserts that w = 1 so that any impossible propagations for the S-box are
ignored by the solver.

SMT modelling for S-boxes oriented to differential probabilities and linear correlations
is comparable to the previously described fundamental model. The SMT model employs a
direct way to eliminate all impossible propagations and does not involve simplification.

5 Fast SAT Models for Large S-boxes
As the reduction of canonical POS is NP-complete, it is typically inefficient to generate
reduced sets of clauses for big S-boxes (e.g., 8-bit S-boxes) oriented to differential proba-
bilities and linear correlations. Thus, there has been no SAT model4 for large S-boxes till
now. In this section, three fast SAT modellings for large S-boxes oriented to differential
probabilities and linear correlations are proposed. Although these approaches cannot guar-
antee a minimum number of clauses, the time required to acquire clauses is significantly
reduced.

The 8-bit S-box S8 (cf. Table 5) of SKINNY-128 [BJK+16] will serve as an illustration
for the presentation of the subsequent three methods. The set

{2−7, 2−6, 2−5.415, 2−5, 2−4.415, 2−4, 2−3.678, 2−3.415, 2−3.193, 2−3, 2−2.678, 2−2.415, 2−2, 1}

consists of the probabilities of possible differential propagations x→ y for S8. Following
the method in [SWW18], seven variables (u0, u1, . . . , u6) ≜ u are then introduced to
describe the integral portion of the weight. To encode the decimal portion of the weight,
three variables (v0, v1, v2) ≜ v are used, with v0 = 1 (resp., v1 = 1, v2 = 1) if and only if
the decimal portion of the weight equals 0.678 (resp., 0.415, 0.193). The option for the set
of possible values for x∥y∥u∥v is

F⟨8,8,10⟩ =

x∥y∥u∥v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x,y ∈ F8
2,u ∈ F7

2,v ∈ F3
2,x→ y is a possible propagation

u∥v =

1∥1∥1∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−7

0∥1∥1∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−6

0∥0∥1∥1∥1∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−5.415

0∥0∥1∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−5

0∥0∥0∥1∥1∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−4.415

0∥0∥0∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−4

0∥0∥0∥0∥1∥1∥1∥1∥0∥0, if Pr(x→ y) = 2−3.678

0∥0∥0∥0∥1∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−3.415

0∥0∥0∥0∥1∥1∥1∥0∥0∥1, if Pr(x→ y) = 2−3.193

0∥0∥0∥0∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−3

0∥0∥0∥0∥0∥1∥1∥1∥0∥0, if Pr(x→ y) = 2−2.678

0∥0∥0∥0∥0∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−2.415

0∥0∥0∥0∥0∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−2

0∥0∥0∥0∥0∥0∥0∥0∥0∥0, if Pr(x→ y) = 1

.

4Note that it is fairly easy to construct large models (e.g., using the approach described in Section 4.1),
but they are not useful.

128 SoK: Modeling for Large S-boxes

The vector in the set verifies the equation
6∑
i=0

ui+0.678·v0 +0.415·v1 +0.193·v2 = − log2(p)

for a propagation x → y that is possible with probability p. F⟨8,8,10⟩ can be viewed as
the support for a 26-bit Boolean function f⟨8,8,10⟩. We attempted to use ESPRESSO to
identify a simplification for the canonical POS form of f⟨8,8,10⟩, but after more than a
hundred days, nothing was returned. Therefore, we wish to discover an alternate method
for constructing a SAT model for S8 that demonstrates differential probability. All of the
experiments in this study are done on a 16-core AMD EPYC™ 7302 processor , of which
only one core is utilised. Although the subsequent approaches are demonstrated using
models for differential probabilities, the creation of SAT models for linear correlation may
be accomplished in a similar fashion.

5.1 Trade-off Between Level of Simplification and Time
The initial attempt is centred on ESPRESSO itself. We notice that ESPRESSO provides
multiple options and commands for minimisation and creates a trade-off between simpli-
fication level and execution time. Listed below are several options that may reduce the
runtime.

-efast This option stops ESPRESSO after the first [Expand] and [Irredundant Cover]
operations (cf. Algorithm 2) and prevents it from iterating over the solution.

-eness With this setting, essential prime implicants will not be identified.

-enirr With this option, the result will not necessarily be made irredundant in the last
step which removes redundant literals.

-eonset This option recalculates the support of the input function prior to minimisation,
which is advantageous when the canonical POS form includes a large number of
maxterms.

Due to the heuristic nature of these options, the number of clauses in the result may
not be the minimal. However, in the vast majority of applications, the number of clauses
is acceptable for modern SAT solvers. ESPRESSO is used to conduct the simplification of
f⟨8,8,10⟩ with the four newly introduced options. The simplification is only accomplished
with the option -eonset. There are 820 clauses in the output, and the total execution time
is 3521.42 seconds. Although the remaining three options claim that certain procedures
are skipped and the simplification may be faster, the programmes do not terminate after
fifty days. Consequently, the first fast SAT model for large S-boxes leverages the -eonset
option of ESPRESSO. The applicability of this strategy is also examined for the S-box of
PIPO [KJK+20], which is a simplification issue for a 25-bit Boolean function. Again, only
the -eonset option delivers the output after 3769.86 seconds, and the simplified result
has 6066 clauses.

5.2 Two-Step Encoding Method
Noting that the complexity of simplification increases exponentially with the number of
input variables, we wondered whether the size of the function may be decreased to alleviate
the difficulty of developing the SAT model. Consequently, the encoding mechanism for
auxiliary variables must be modified.

Initially, we examine the set F⟨8,8,10⟩ and notice that u5 and u6 always have the same
value. Therefore, it is logical to reduce the number of auxiliary variables for the integral

Ling Sun and Meiqin Wang 129

portion to six, i.e., u ∈ F6
2, and reconstruct the set of possible values for x∥y∥u∥v as

F⟨8,8,9⟩ =

x∥y∥u∥v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x,y ∈ F8
2,u ∈ F6

2,v ∈ F3
2,x→ y is a possible propagation

u∥v =

1∥1∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−7

0∥1∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−6

0∥0∥1∥1∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−5.415

0∥0∥1∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−5

0∥0∥0∥1∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−4.415

0∥0∥0∥1∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−4

0∥0∥0∥0∥1∥1∥1∥0∥0, if Pr(x→ y) = 2−3.678

0∥0∥0∥0∥1∥1∥0∥1∥0, if Pr(x→ y) = 2−3.415

0∥0∥0∥0∥1∥1∥0∥0∥1, if Pr(x→ y) = 2−3.193

0∥0∥0∥0∥1∥1∥0∥0∥0, if Pr(x→ y) = 2−3

0∥0∥0∥0∥0∥1∥1∥0∥0, if Pr(x→ y) = 2−2.678

0∥0∥0∥0∥0∥1∥0∥1∥0, if Pr(x→ y) = 2−2.415

0∥0∥0∥0∥0∥1∥0∥0∥0, if Pr(x→ y) = 2−2

0∥0∥0∥0∥0∥0∥0∥0∥0, if Pr(x→ y) = 1

.

As a result, the evaluation of the weight for a feasible propagation is modified using
5∑
i=0

ui + u5 + 0.678 · v0 + 0.415 · v1 + 0.193 · v2. The set F⟨8,8,9⟩ is then treated as the

support for the 25-bit function f⟨8,8,9⟩, and ESPRESSO is used to simplify it under various
options. -eonset is the only option that returns the result after 1883.51 seconds; 818
clauses comprise the simplification. Comparatively to the simplification for f⟨8,8,10⟩, the
time required to achieve the solution is decreased although the number of clauses is almost
the same.

Then, we evaluate the feasibility of reducing the size of the function received by
ESPRESSO further. The main idea is dividing the encoding phase for an n-bit S-box into
two steps. In addition to the auxiliary variables u and v introduced regarding the integral
and decimal parts of the weight, we claim a set of chaining variables z.

In the first step, we map the various probabilities to distinct values of the vector z.
We recall that P represents the set containing all probabilities for possible differential
propagations and denote the elements in P as {p0, p1, . . . , p|P|−1}. Thus, the number of
required chaining variables is ⌈log2(|P|)⌉ ≜ ζ. To be specific, we introduce ζ variables
(z0, z1, . . . , zζ−1) = z. An option for the set of possible values for the vector x∥y∥z is

F (1)
⟨n,n,ζ⟩ =

{
x∥y∥z

∣∣∣∣ x,y ∈ Fn2 , z ∈ Fζ2,x→ y is a possible propagation
z = i if Pr(x→ y) = pi for all 0 ⩽ i ⩽ |P| − 1

}
.

In the second step, we create a connection between chaining variables z and auxiliary

variables u∥v so that
µ−1∑
i=0

ui+
ν−1∑
i=0

di ·vi can correctly compute the weight of the propagation.

An option for the set of possible values for the vector z∥u∥v is

F (2)
⟨ζ,µ+ν⟩ =

z∥u∥v

∣∣∣∣∣∣∣∣∣∣∣

z ∈ Fζ2,u ∈ Fµ2 ,v ∈ Fν2 , if z = i
u = 0∥0∥ · · · ∥0∥ 1∥1∥ · · · ∥1︸ ︷︷ ︸

⌊− log2(pi)⌋ bits

v =
{

0∥0∥ · · · ∥0, if − log2(pi) is an integer
el, if ⌈log2(pi)⌉ − log2(pi) = dl ∈ D

,

where the two components in the subscript of F are the number of chaining variables
and the number of auxiliary variables for the integral and decimal parts of the weight.

130 SoK: Modeling for Large S-boxes

Thus, with these two steps, we convert the simplification of a large-scale function into the
simplification of two relatively small-scale functions f (1)

⟨n,n,ζ⟩ and f
(2)
⟨ζ,µ+ν⟩, whose supports

are F (1)
⟨n,n,ζ⟩ and F (2)

⟨ζ,µ+ν⟩, respectively.
We return to the S-box S8 of SKINNY-128. In first step, we introduce four chaining

variables (z0, z1, z2, z3) ≜ z and create an option for the set of possible values for x∥y∥z as

F (1)
⟨8,8,4⟩ =

x∥y∥z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x,y ∈ F8
2, z ∈ F4

2,x→ y is a possible propagation

z =

1∥1∥0∥1, if Pr(x→ y) = 2−7

1∥1∥0∥0, if Pr(x→ y) = 2−6

1∥0∥1∥1, if Pr(x→ y) = 2−5.415

1∥0∥1∥0, if Pr(x→ y) = 2−5

1∥0∥0∥1, if Pr(x→ y) = 2−4.415

1∥0∥0∥0, if Pr(x→ y) = 2−4

0∥1∥1∥1, if Pr(x→ y) = 2−3.678

0∥1∥1∥0, if Pr(x→ y) = 2−3.415

0∥1∥0∥1, if Pr(x→ y) = 2−3.193

0∥1∥0∥0, if Pr(x→ y) = 2−3

0∥0∥1∥1, if Pr(x→ y) = 2−2.678

0∥0∥1∥0, if Pr(x→ y) = 2−2.415

0∥0∥0∥1, if Pr(x→ y) = 2−2

0∥0∥0∥0, if Pr(x→ y) = 1

.

In the second step, we create the connection between z and u∥v. An option for the set of
possible values for z∥u∥v is

F (2)
⟨4,10⟩ =

z∥u∥v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z ∈ F4
2,u ∈ F7

2,v ∈ F3
2

u∥v =

1∥1∥1∥1∥1∥1∥0∥0∥0, if z = 1∥1∥0∥1
0∥1∥1∥1∥1∥1∥0∥0∥0, if z = 1∥1∥0∥0
0∥0∥1∥1∥1∥1∥0∥1∥0, if z = 1∥0∥1∥1
0∥0∥1∥1∥1∥1∥0∥0∥0, if z = 1∥0∥1∥0
0∥0∥0∥1∥1∥1∥0∥1∥0, if z = 1∥0∥0∥1
0∥0∥0∥1∥1∥1∥0∥0∥0, if z = 1∥0∥0∥0
0∥0∥0∥0∥1∥1∥1∥0∥0, if z = 0∥1∥1∥1
0∥0∥0∥0∥1∥1∥0∥1∥0, if z = 0∥1∥1∥0
0∥0∥0∥0∥1∥1∥0∥0∥1, if z = 0∥1∥0∥1
0∥0∥0∥0∥1∥1∥0∥0∥0, if z = 0∥1∥0∥0
0∥0∥0∥0∥0∥1∥1∥0∥0, if z = 0∥0∥1∥1
0∥0∥0∥0∥0∥1∥0∥1∥0, if z = 0∥0∥1∥0
0∥0∥0∥0∥0∥1∥0∥0∥0, if z = 0∥0∥0∥1
0∥0∥0∥0∥0∥0∥0∥0∥0, if z = 0∥0∥0∥0

.

F (1)
⟨8,8,4⟩ can be seen as the support of a 20-bit function f

(1)
⟨8,8,4⟩, and F (2)

⟨4,10⟩ can be viewed
as the support of a 14-bit function f

(2)
⟨4,10⟩. Simplifying f (1)

⟨8,8,4⟩ and f
(2)
⟨4,10⟩ is much easier

than reducing f⟨8,8,10⟩ and f⟨8,8,9⟩. For small-scale functions, ESPRESSO provides two
commands, which are listed in the following, to obtain potentially better result.

-estrong This option substitutes [Lastgasp] with the alternative strategy [Supergasp]
(cf. Algorithm 2) , which is more expensive but sometimes yields superior results.

Ling Sun and Meiqin Wang 131

-Dexact This command executes the precise minimisation procedure, which guarantees
the smallest possible amount of clauses and heuristically minimises the number of
literals. It might potentially be costly.

We apply different options in ESPRESSO to simplify f (1)
⟨8,8,4⟩ and f (2)

⟨4,10⟩, and the result
is listed in Table 4. Options, such as -efast, -eness and -enirr, which were previously
inapplicable for f⟨8,8,10⟩ and f⟨8,8,9⟩, can now be used to simplify f (1)

⟨8,8,4⟩. The time required
to simplify f (1)

⟨8,8,4⟩ with the -eonset option is significantly shorter than the time required
to simplify f⟨8,8,10⟩ or f⟨8,8,9⟩. The two-step encoding approach is still highly efficient when
the total time is comprised of the simplifications for f (1)

⟨8,8,4⟩ and f
(2)
⟨4,10⟩. In addition, the

amount of clauses for the two-step method is 787 when both functions are simplified with
the -eonset option, which is fewer than the 820 (resp., 818) clauses that correspond to
the simplified result for f⟨8,8,10⟩ (resp., f⟨8,8,9⟩).

Table 4: Results for the simplification of f (1)
⟨8,8,4⟩ and f

(2)
⟨4,10⟩.

Option f
(1)
⟨8,8,4⟩ f

(2)
⟨4,10⟩

The number of clauses Runtime The number of clauses Runtime

Null 757 87359.76s 30 1.39s
-efast 839 98018.76s 32 1.37s
-eness 757 95035.71s 30 1.46s
-enirr 757 92729.09s 30 1.4s
-eonset 757 98.83s 30 0.14s
-estrong 730 101050.85s 28 1.45s
-Dexact - > 60 days 28 0.16s

Null: There is no option used in the implementation of ESPRESSO.

f |s0 f̃ |s0

f |s1 f̃ |s1

f |s2 f̃ |s2

f |s3 f̃ |s3

f |s−1
0 f̃ |s−1

0

f |s−1
1 f̃ |s−1

1

f |s−2
0 f̃ |s−2

0

f |s2s−4 f̃ |s2s−4

f |s2s−3 f̃ |s2s−3

f |s2s−2 f̃ |s2s−2

f |s2s−1 f̃ |s2s−1

f |s−1
2s−1−2 f̃ |s−1

2s−1−2

f |s−1
2s−1−1 f̃ |s−1

2s−1−1

f |s−2
2s−2−1 f̃ |s−2

2s−2−1

· · · · · · · · · · · · · · · · · ·
· · · f |10 f̃ |10

· · · f |11 f̃ |11
f |0⊘ f̃ |0⊘

Initial sub-functions of f

Simplified functions with ESPRESSO

Conjunctions of two functions

Simplifying phase with ESPRESSO

Combining phase

Figure 1: Iterative simplification.

5.3 Simplifying by Partitioning Method
In the test regarding ESPRESSO, we find that the simplification of a large-scale function
is not difficult if the number of maxterms in the function is not excessively huge. This
observation is the basis for the third method.
Definition 3. Given a set X , a family of sets Ψ is a partition of X if and only if the
following conditions are met.

132 SoK: Modeling for Large S-boxes

• The family Ψ does not contain the empty set.

• X is equal to the union of the sets contained in Ψ .

• In Ψ, the intersection of any two different sets is empty set.

Assume that Ψ = {ψ0, ψ1, . . . , ψχ−1} is a partition of the set supp(f), where supp(f)
is the support of the n-bit function f in Equation (1). For each set ψi in Ψ, we define a
function fi with ψi as its support. With this definition, f can be expressed as

f(x) =
∧

u∈supp(f)

Mu(x) =
χ−1∧
i=0

∧
u∈ψi

Mu(x) =
χ−1∧
i=0

fi(x).

If a simplified representation f̃i with fewer disjunctions can be found for each fi, then the

conjunction
χ−1∧
i=0

f̃i yields a simplified form of f .

Next, we determine the partition of the set supp(f) based on this insight. As demon-
strated by the Quine-McCluskey technique, grouping maxterms by the Hamming weight
of each term decreases the number of comparisons. Therefore, we hypothesise that the
simplification could be made simpler if the maxterms in a given set share as many bit
values as possible. To propose a general method of partition, we start with a partition
of the set Fn2 . Denote Fn2 [s|x̊], where 0 < s ⩽ n and x̊ ∈ Fs2, a subset of Fn2 , and

(a) Test results regarding the -eonset option.

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

0 1000 2000 3000 4000 5000 6000

3521

3043

2354

2053

1929

1651

1372

1309

1197

1195

1076

1139

1300

1867

2993

5012

ESPRESSO runtime (s)

0 790 795 800 805 810 815 820 825

820

823

807

813

807

807

814

815

812

811

811

821

807

807

815

822

The number of clauses for the S-box

0 7000 8000 9000 10000 11000

7601.7

9513.7

10079.5

9642.6

9674.3

9676.8

10270.7

9852.1

9557.7

10116.3

9699.7

10245.1

10345.5

10125.3

9742.1

10075.2

SAT solver runtime (s)

0 10000 11000 12000 13000 14000 15000 16000

11123.1

12556.7

12433.5

11695.6

11603.3

11327.8

11642.7

11161.1

10754.7

11311.3

10775.7

11384.1

11645.5

11992.3

12735.1

15087.2

Total runtime (s)

(b) Test results regarding the -estrong option.

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

20 24 28 212 216 220 224

4940209

2680643

839358

155709

49096

16837

5386

2033

1816

2296

3307

5422

3521.4s

ESPRESSO runtime (s)

0 790 795 800 805 810 815 820 825

800

797

798

795

794

797

804

802

792

799

798

801

The number of clauses for the S-box

820

0 7000 8000 9000 10000 11000

10259.8

10305.3

10456.8

9916.9

10561.5

10063.2

10766.9

9850.2

10307.8

10204.6

10255.2

10222.3

SAT solver runtime (s)

7601.7s

20 24 28 212 216 220 224

4950469

2690948

849815

165626

59657

26900

16153

11883

12124

12501

13562

15644

11123.1s

Total runtime (s)

Figure 2: Iterative simplification for the 26-bit Boolean function f⟨8,8,10⟩ regarding S8.
s = 0 indicates that the partitioning method is not employed. Total runtime is the sum
of ESPRESSO and SAT solver execution times. Note that for s < 4, the simplification
with the -estrong option does not return the result after more than sixty days, making it
infeasible.

Ling Sun and Meiqin Wang 133

the first s-bit value of the vectors x in Fn2 [s|x̊] is equal to x̊, i.e., x ≫ (n − s) = x̊.
The family of sets

{
Fn2 [s|x̊] | x̊ ∈ Fs2

}
constitutes a partition of Fn2 with 2s sets, and

we use Ψn
⟨s⟩ to denote this partition. Naturally, the partition Ψn

⟨s⟩ restricted on the set

Ψn
⟨s⟩ ∩ supp(f) =

{
Fn2 [s|x̊] ∩ supp(f)

∣∣∣ x̊ ∈ Fs2
}

turns into a partition of supp(f); for sim-
plicity, the partition is written as Ψn

⟨s⟩
∣∣
f
, and the set Fn2 [s|x̊] ∩ supp(f) in the partition is

denoted as Ψn
⟨s⟩
∣∣
f
[x̊].

According to the preceding analysis, the partition Ψn
⟨s⟩
∣∣
f

permits the decomposition of
the function f into 2s sub-functions with support being Ψn

⟨s⟩
∣∣
f
[x̊], which are abbreviated

as f |sx̊ for convenience, where x̊ ∈ Fs2. The combination of simplified expressions
∧

x̊∈Fs
2

f̃ |sx̊

for sub-functions is a simplification for f . Nonetheless, during the testing step, we notice
that the number of clauses in the simplified form generated by this method is typically
quite high. In order to further optimise the simplification for f , we employ an iterative
approach.

(a) Test results regarding the -eonset option.

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

0 1000 2000 3000 4000 5000 6000

1883

1638

1214

1043

988

771

693

640

601

608

633

747

1054

1712

2963

5852

ESPRESSO runtime (s)

0 790 795 800 805 810 815 820 825

818

819

806

812

806

806

812

814

811

810

810

816

805

806

815

821

The number of clauses for the S-box

0 7000 8000 9000 10000 11000 12000

7952.3

11315.1

10420.4

10652.3

10991.5

11460.6

11013.8

10695.5

10927.7

10902.8

11458.4

11279

11665.1

10586.1

10989.3

10818.3

SAT solver runtime (s)

0 9000 11000 13000 15000 17000

9835.8

12953.1

11634.4

11695.3

11979.5

12231.6

11706.8

11335.5

11528.7

11510.8

12091.4

12026

12719.1

12298.1

13952.3

16670.3

Total runtime (s)

(b) Test results regarding the -estrong option.

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

20 24 28 212 216 220 224

1017693

395773

99396

39891

13198

4694

1950

1382

1461

2026

3178

6197

1883.5s

ESPRESSO runtime (s)

0 790 795 800 805 810 815 820 825

798

794

796

794

797

794

802

797

792

797

794

800

The number of clauses for the S-box

818

0 7000 8000 9000 10000 11000 12000

11645.4

10567

11545.7

11826.1

11274.6

11348.5

11967.8

11169.6

11362

11430.6

11424.4

11982.3

SAT solver runtime (s)

7952.3s

20 24 28 212 216 220 224

1029338

406340

110942

51717

24473

16043

13918

12552

12823

13457

14602

18179

9835.8s

Total runtime (s)

Figure 3: Iterative simplification for the 25-bit Boolean function f⟨8,8,9⟩ regarding S8.
Note that for s < 4, the simplification with the -estrong option does not return the result
after more than sixty days, making it infeasible.

Figure 1 displays the core idea. After simplifying 2s functions f |sx̊, the simplified
functions f̃ |sx̊ are combined in pairs. Specifically, if two vectors x̊1 and x̊2 differ in their
last bit, the clauses of two functions f̃ |sx̊1

and f̃ |sx̊2
are concatenated into one function

f |s−1
x̊1≫1. This yields a total of 2s−1 functions f |s−1

x̊ with x̊ ∈ Fs−1
2 . These functions are

again simplified using ESPRESSO, and the results are merged in pairs to get 2s−2 functions
f |s−2

x̊ with x̊ ∈ Fs−2
2 . This process is done until the clauses of two functions f̃ |10 and f̃ |11

are merged into a single function f |0⊘. By using ESPRESSO to simplify the function f |0⊘,

134 SoK: Modeling for Large S-boxes

f̃ |0⊘ is generated, which is a simplification of the original function f .
It can be imaged that the level of simplification of the final output and the runtime

are affected by the number of components in the initial partition Ψn
⟨s⟩
∣∣
f
. To discover the

feasibility of the iterative approach, we implement tests for the 26-bit Boolean function
f⟨8,8,10⟩ regarding S8. In the test, the value of s is traversed from 1 to 15, and the outcome
of simplification using the -eonset option is depicted in Figure 2(a). From Figure 2(a),
we find that the runtime shows a decrease followed by an increase with the increasing of
s. When s is set to 10, the time required to obtain the simplification is 1076s, which is
significantly shorter than the time required without the partition approach. Additionally,
some values of s make it possible to achieve a simplification with fewer clauses. For
instance, when s is set to 2, 4, 5, 12, or 13, 807 clauses are returned. Since the number of
maxterms in f̃ |sx̊1

is significantly fewer than that of f , the -estrong option can be used
to simplify f⟨8,8,10⟩ for certain values of s. As illustrated in Figure 2(b), it is possible to
reduce the number of clauses even if the runtime may be exceptionally long. Notably,
when s is set to 12, the result of employing the -estrong option is reduced to 792 clauses.

(a) Test results regarding the -eonset option.

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

0 1000 2000 3000 4000 5000

99

39

34

36

40

35

40

44

60

95

177

402

848

1542

2750

4745

ESPRESSO runtime (s)

0 720 730 740 750 760 770

757

765

764

761

760

756

764

759

754

768

762

752

762

756

761

758

The number of clauses for the S-box

0 11000 12000 13000 14000 15000 16000 17000

12639.4

11087.2

12745.4

12293.1

12427.6

11458.7

12950.7

12217.3

11727.7

11591

12737.3

12194.4

12398.7

14276.5

13128.7

11730.6

SAT solver runtime (s)

0 11000 12000 13000 14000 15000 16000 17000

12738.4

11126.3

12779.5

12329.2

12467.7

11493.8

12990.9

12261.5

11787.8

11686.1

12914.4

12596.6

13246.8

15818.7

15878.8

16475.8

Total runtime (s)

(b) Test results regarding the -estrong option.

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

s = 12

s = 13

s = 14

s = 15

20 23 26 29 212 215 218

101051

32822

1970

940

446

354

200

168

140

181

268

475

908

1607

2804

4799

ESPRESSO runtime (s)

0 720 730 740 750 760 770

730

730

735

728

732

730

734

727

730

731

733

739

732

731

729

728

The number of clauses for the S-box

0 11000 12000 13000 14000 15000 16000 17000

12564.3

12853.4

12918

13171.6

12136.6

12546.9

12615.6

13145.4

12339.6

13547.2

12712.5

13659.6

13345.5

13449.3

13500.1

13155.4

SAT solver runtime (s)

20 23 26 29 212 215 218

113615

45676

14888

14112

12583

12901

12816

13314

12480

13728

12981

14135

14254

15056

16304

17955

Total runtime (s)

Figure 4: Iterative simplification for the 20-bit Boolean function f
(1)
⟨8,8,4⟩ regarding S8.

To illustrate that simplification by partition is a widely used technique, it is also applied
to the 25-bit Boolean function f⟨8,8,9⟩ and the 20-bit Boolean function f (1)

⟨8,8,4⟩ with respect
to SKINNY-128. As seen in Figure 3, the partition approach reduces the time required to
get simplified clauses with the -eonset option, and when s is set to 12, the number of
clauses reaches 805, which is fewer than the number of clauses that would be generated
without partitioning. In addition, when s ⩾ 4, the -estrong option can be used, and the
runtime is less than 1883.51 seconds when s is 11 or 12. In general, the number of clauses

Ling Sun and Meiqin Wang 135

returned by the -estrong option is always smaller than the number returned by the
-eonset option. The number of clauses reaches 792 when s equals 12. Figure 4 illustrates
the outcome of simplifying f (1)

⟨8,8,4⟩. Using the partition technique for simplification with the
-eonset option might marginally reduce the time required to obtain the simplified clauses,
as the runtime without partitioning is already quite quick. A benefit is that the number
of clauses can be somewhat decreased. For simplifications utilising the -estrong option,
the time required to achieve a simplified result is drastically decreased when compared
to the simplification that do not employ the partition approach. When s is set to 7, the
execution time is lowered from 101051 seconds to 168 seconds, and the number of clauses
is decreased from 730 to 727. These examples demonstrate that the partition approach is
effective not just for simplifying large-scale functions, but also for simplifying small-scale
functions with the -estrong option.

6 Tight Probability Bound for 14 Rounds of SKINNY-128

In this section, we will first review the specifications of SKINNY-128 and then present the
probability bound for 14-round encryption. In the latter portion of this section, we take
SKINNY-128 as an example to analyse the runtime for solving SAT problems constructed
using different encoding methods in Section 5.

6.1 Specification of SKINNY-128

SKINNY-128 is one variant of the SKINNY family of lightweight block ciphers [BJK+16].
The block size is n = 128 bits, and during the encryption phase, the internal state is viewed
as a 4× 4 square array of bytes. SKINNY-128 is based on the TWEAKEY framework in
[JNP14] and accepts tweakey input. The user can select which portion of the tweakey
input serves as the key and/or tweak material. There are three variations of SKINNY-128
based on tweakey size t, with tweakey sizes of 128, 256, and 384, respectively. The tweakey
state is seen as a collection of t/n 4× 4 square arrays of bytes.

Initialisation After receiving a plaintext m = m0∥m1∥ · · · ∥m15, where mi ∈ F8
2, 0 ⩽ i ⩽ 15,

the internal state is created by setting the internal state IS to

IS =

m0 m1 m2 m3
m4 m5 m6 m7
m8 m9 m10 m11
m12 m13 m14 m15

 .
ISi,j represents the internal state cell placed in the i-th row and j-th column. The
4× 4 square array of cells can be viewed as a vector by concatenating the rows, and
the cell of the internal state located at the l-th position in the vector is denoted with
a single subscript ISl, i.e., ISi,j = IS4i+j .

SC AC

ART

≫ 3

≫ 2

≫ 1

SR MC

Figure 5: Round function of SKINNY-128.

As illustrated in Figure 5, a single encryption round consists of the following five
operations: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR),

136 SoK: Modeling for Large S-boxes

and MixColumns (MC). The number of rounds r varies according to the block and tweakey
sizes. The minimal number of rounds required for SKINNY-128 is 40 rounds.

Table 5: S8 of SKINNY-128. x∥y represents the 8-bit input, where x,y ∈ F4
2.

S8(x||y) y

0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 65 4c 6a 42 4b 63 43 6b 55 75 5a 7a 53 73 5b 7b
1 35 8c 3a 81 89 33 80 3b 95 25 98 2a 90 23 99 2b
2 e5 cc e8 c1 c9 e0 c0 e9 d5 f5 d8 f8 d0 f0 d9 f9
3 a5 1c a8 12 1b a0 13 a9 05 b5 0a b8 03 b0 0b b9
4 32 88 3c 85 8d 34 84 3d 91 22 9c 2c 94 24 9d 2d
5 62 4a 6c 45 4d 64 44 6d 52 72 5c 7c 54 74 5d 7d
6 a1 1a ac 15 1d a4 14 ad 02 b1 0c bc 04 b4 0d bd
7 e1 c8 ec c5 cd e4 c4 ed d1 f1 dc fc d4 f4 dd fd
8 36 8e 38 82 8b 30 83 39 96 26 9a 28 93 20 9b 29
9 66 4e 68 41 49 60 40 69 56 76 58 78 50 70 59 79
a a6 1e aa 11 19 a3 10 ab 06 b6 08 ba 00 b3 09 bb
b e6 ce ea c2 cb e3 c3 eb d6 f6 da fa d3 f3 db fb
c 31 8a 3e 86 8f 37 87 3f 92 21 9e 2e 97 27 9f 2f
d 61 48 6e 46 4f 67 47 6f 51 71 5e 7e 57 77 5f 7f
e a2 18 ae 16 1f a7 17 af 01 b2 0e be 07 b7 0f bf
f e2 ca ee c6 cf e7 c7 ef d2 f2 de fe d7 f7 df ff

SubCells (SC) The 8-bit S-box S8 (cf. Table 5) is applied to each byte of the state.

AddConstants (AC) A 6-bit LFSR, whose state is indicated by (rc5, rc4, rc3, rc2, rc1, rc0),
is used to generate round constants. The function for updating is

rc4∥rc3∥rc2∥rc1∥rc0∥rc5 ⊕ rc4 ⊕ 1← rc5∥rc4∥rc3∥rc2∥rc1∥rc0.

The six bits of the LFSR are initialised to zero, and the LFSR is updated before
being used in the current round. The bits of the LFSR are organised in a 4× 4 array

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0

 ,
where c0 = 0∥0∥0∥0∥rc3∥rc2∥rc1∥rc0, c1 = 0∥0∥0∥0∥0∥0∥rc5∥rc4, and c2 = 0x02.
The round constants are mixed with the internal state via bitwise XOR operations,
while array placement is respected.

AddRoundTweakey (ART) The first and second rows of each tweakey array are extracted
and XORed with the internal state. Since the value of tweakey has no effect on the
search for differential characteristics, we do not describe its construction.

ShiftRows (SR) The second, third, and fourth rows are rotated to the right by one, two,
and three bytes, respectively.

MixColumns (MC) Multiplying each column of the internal state by the following binary
matrix

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

Ling Sun and Meiqin Wang 137

6.2 Tight Probability Bound for 14-Round of SKINNY-128

Due to the large size of the state, the designers of SKINNY-128 gave only lower bounds for
the number of differential active S-boxes. Given that the number of active S-boxes for 14
rounds is 61, the probability for 14-round differential characteristics has an upper bound of
2−122. Abdelkhalek et al. attempted to propose tight upper bounds for the probability of
SKINNY-128 utilising a MILP model for large S-boxes. The task was completed up to 13
rounds, and the search on 13 rounds took 16 days, according to [AST+17]. For 14-round of
SKINNY-128, they merely demonstrated that no differential characteristic had a probability
greater than 2−128.

Table 6: Upper bound on the differential probability p of SKINNY-128.

Round 1 2 3 4 5 6 7
− log2(p) 2 4 10 16 24 32 52

Round 8 9 10 11 12 13 14
− log2(p) 72 86 96 104 112 123 131

Using the fast SAT models for big S-boxes, we find in this paper that the upper bound
on the probability for 14 rounds of SKINNY-128 is 2−131, thereby finishing the remaining
task of Abdelkhalek et al. The outcome of searching for the upper bound on the differential
probability for up to 14 rounds of SKINNY-128 using the SAT approach is shown in Table 6.
The probability bounds for 10-round and 13-round differential characteristics conform
to the result in [AST+17]. Figure 6 illustrates a 14-round differential characteristic of
SKINNY-128 with probability 2−131.

6.3 Runtime with Different Encoding Methods for S-boxes
The time required to solve SAT problems generated with different S-box encoding techniques
varies. The numerous sets of clauses in Section 5 produced by ESPRESSO under various
settings and encoding techniques are utilised to determine the upper bound of differential
probability for SKINNY-128 from 1 to 14 rounds. The solver Cryptominisat is used to
solve all of the SAT problems in this study. In the test, we use the models returned by
ESPRESSO without modifying the order of the clauses in the model. We should remind
the reader that the order of clauses and/or variables may also influence the execution time
of the SAT solver. In addition, the SAT solver may also have a considerable variance in
the execution time, and we believe that a comparison with other SAT solvers would be an
interesting research project.

As seen in Figure 2, for the 26-bit encoding of S8, the partition approach can minimise
the time required for ESPRESSO to create reduced clauses, but the time required for the
SAT solver to solve the SAT problem rises. The good news is that for some values of s,
the overall runtime, which consists of the runtimes for ESPRESSO and SAT solver, can be
decreased. For example, when s is set to 8, the overall runtime is 10754.7 seconds, however
it is 11123.1 seconds when using the clauses provided in Section 5.1.

Figure 3 depicts the test outcomes relevant to the 25-bit encoding of S8. Similar to
the scenario presented in Figure 2, the partition approach shortens the execution time
for ESPRESSO but cannot reduce the execution time for the SAT solver. In addition, a
comparison of Figure 2 and Figure 3 reveals that lowering the number of variables may
not reduce the execution time of SAT solver. If the partition technique is not employed,
for instance, it takes 7601.7 seconds to solve a SAT problem with S-boxes containing 820
clauses and 26 variables; whereas it takes 7952.3 seconds to solve a SAT problem with
S-boxes containing 818 clauses and 25 variables. Recall that Sasaki and Todo [ST17]

138 SoK: Modeling for Large S-boxes

Round 0 - 1
0x20

0x20

0x20 0x20

SC
0x90

0x90

0x90 0x90 S
R
◦A

R
T
◦A

C

0x90

0x90

0x90 0x90

0x90

0x90

0x90

0x90

SC

0x02

0x02 S
R
◦A

R
T
◦A

C 0x02

0x02

0x02

0x02

Round 2 - 3

0x08

0x08

0x08

0x08

0x08

0x08S
R
◦A

R
T
◦A

C

0x02

0x02

SC
0x10

0x10

0x10

0x10

0x10

0x10

S
R
◦A

R
T
◦A

C 0x08

0x08
SC

Round 4 - 5
0x10

0x10
SC

0x40

0x40

S
R
◦A

R
T
◦A

C

0x40

0x40

0x40

0x40 0x40

0x40

0x40

0x40 0x40

0x40

SC

0x04

0x04 0x04

0x04 S
R
◦A

R
T
◦A

C 0x04

0x040x04

0x04

0x04 0x04 0x04 0x04

0x04

0x04 0x04

0x04 0x04 0x04

Round 6 - 7

0x05 0x06 0x05 0x04

0x05 0x05 0x01 0x05

0x05 0x05 0x01

0x05 0x04 0x05

0x05 0x05 0x01 0x05

0x01

0x050x05

0x010x06 0x01

0x05 0x05 0x01 0x05

0x01

0x05 0x05

0x01 0x06 0x01S
R
◦A

R
T
◦A

C 0x04 0x04 0x04 0x04

0x04

0x04 0x04

0x04 0x04 0x04

SC

0x01

0x01 0x21 0x01 0x01

0x21 0x01 0x21

0x01 0x01

0x01 0x21 0x01 0x01

0x01 0x01 0x200x01

0x010x01 0x20

0x010x01 0x01

0x01 0x21 0x01 0x01

0x01 0x01 0x20 0x01

0x01 0x01 0x20

0x01 0x01 0x01S
R
◦A

R
T
◦A

C 0x05 0x06 0x05 0x04

0x05 0x05 0x01 0x05

0x05 0x05 0x01

0x05 0x04 0x05

SC

Round 8 - 9

0x01

0x01 0x21 0x01 0x01

0x21 0x01 0x21

0x01 0x01

SC

0x20

0x20 0x20 0x20 0x20

0x20 0x20 0x20

0x20 0x20 S
R
◦A

R
T
◦A

C 0x20

0x20 0x20 0x200x20

0x200x20 0x20

0x20 0x20

0x20

0x20

0x20 0x20

0x20

0x20

0x20 0x20

SC
0x80

0x80

0x80 0x80 S
R
◦A

R
T
◦A

C

0x80

0x80

0x800x80

0x80

0x80

Round 10 - 11
0x02

0x02

0x02

0x02

0x02

0x02S
R
◦A

R
T
◦A

C 0x80

0x80

SC

0x08

0x08

0x08

0x08

0x08

0x08S
R
◦A

R
T
◦A

C

0x02

0x02

SC

Round 12 - 13

0x08

0x08
SC

0x10

0x10

S
R
◦A

R
T
◦A

C 0x10

0x10

0x10

0x10

0x10

0x10
SC

0x40

0x40

S
R
◦A

R
T
◦A

C

0x40

0x40

0x40

0x40 0x40

0x40

An active S-box with probability 2−2 An active S-box with probability 2−3 A byte with nonzero difference A byte with zero difference

Figure 6: 14-round differential characteristic of SKINNY-128 with probability 2−131.

shown that, for 4-bit S-boxes, lowering the number of inequalities in MILP models does
not necessarily reduce the runtime of the MILP optimiser. Figure 2 and Figure 3 illustrate
that, for 8-bit S-boxes, reducing the number of clauses in SAT problems does not always
decrease the execution time of SAT solver. Moreover, a comparison of Figure 2 and
Figure 3 demonstrates that lowering the number of variables in SAT problems may not
reduce the execution time of SAT solver.

The sets of clauses (see Table 4) created by the two-step encoding approach are also
incorporated into SAT problems so that the runtime for searching for 1-round to 14-round
upper bound on differential probability for SKINNY-128 may be evaluated. The test result
is given in Figure 7. Figure 7 demonstrates that for two sets of clauses with the same
amount of clauses, the runtime for the SAT solver to solve their respective SAT problems
may change. When comparing the results of Figure 7 to those of Figure 2 and Figure 3,
it is evident that the time required for ESPRESSO to locate simplified clauses has been
drastically decreased. If the ESPRESSO option -eonset is fixed, the runtime for the
simplification phase of the two-step technique is 99.0 seconds, whereas the runtimes for the
26-bit and 25-bit encodings are 3521.4 and 1883.5 seconds, respectively. The bad news is
that the total runtime increases; the minimum total runtime for the two-step technique is
12659.4 seconds, whereas the minimum total runtimes for the 26-bit and 25-bit encodings
are 11123.1 seconds and 9835.8 seconds, respectively.

Figure 4 depicts the cumulative impact of the two-step technique and partition method
on the execution time of SAT solver. As shown in Figure 4(a), incorporating the partition
into the two-step technique may have a beneficial impact on the execution time of SAT
solver when ESPRESSO is implemented with the -eonset option. For instance, when s
is set to 1, the runtime of the SAT solver is 11087.2 seconds, which is shorter than the

Ling Sun and Meiqin Wang 139

12639.4 seconds required by the technique without the partition method. In addition, the
overall execution time for s = 1 is 11126.3 seconds, which is faster than the total execution
time when the partition technique is not used. Comparing the findings in Figure 4(a) and
Figure 4(b) demonstrates the previously indicated fact, namely that lowering the number
of clauses in SAT problems does not necessarily reduce the execution time of the SAT
solver.

After analysing all the test results, we conclude that the encoding strategy described in
Section 5.1, which relies on the -eonset option given by ESPRESSO, is a good solution for
balancing the runtime for ESPRESSO and the execution time for the SAT solver. In the
remaining applications for PIPO and AES-based constructions, we employ the procedure
described in Section 5.1 to create S-box clauses.

7 Related-Key Differential Properties of PIPO
In this section, the modelling approach for large S-boxes is applied to PIPO, and the
related-key differential properties of the two variants of PIPO are studied.

Null

-efast

-eness

-enirr

-eonset

-estrong

E
S
P
R
E
S
S
O

op
ti
o
n
fo
r
f
(1

)
⟨8

,8
,4
⟩ Null -efast -eness -enirr -eonset -estrong -Dexact

ESPRESSO option for f
(2)
⟨4,10⟩

87361.2 87361.1 87361.2 87361.2 87359.9 87361.2 87359.9

98020.2 98020.1 98020.2 98020.2 98018.9 98020.2 98018.9

95037.1 95037.1 95037.2 95037.1 95035.9 95037.2 95035.9

92730.5 92730.5 92730.6 92730.5 92729.2 92730.5 92729.3

100.2 100.2 100.3 100.2 99.0 100.3 99.0

101052.2 101052.2 101052.3 101052.3 101051.0 101052.3 101051.0

110000

0

ESPRESSO
runtime (s)

Null

-efast

-eness

-enirr

-eonset

-estrong

E
S
P
R
E
S
S
O

op
ti
o
n
fo
r
f
(1

)
⟨8

,8
,4
⟩

787 789 787 787 787 785 785

869 871 869 869 869 867 867

787 789 787 787 787 785 785

787 789 787 787 787 785 785

787 789 787 787 787 785 785

760 762 760 760 760 758 758

875

755

The number
of clauses for
the S-box

Null

-efast

-eness

-enirr

-eonset

-estrong

E
S
P
R
E
S
S
O

op
ti
on

fo
r
f
(1

)
⟨8

,8
,4
⟩

11628.0 11664.1 11618.0 11598.3 12372.8 11682.6 12377.6

12506.7 12385.2 12516.6 12636.3 13081.2 12580.7 12738.1

12198.2 12796.2 12548.0 12210.1 12219.7 12110.8 12689.3

11890.6 11900.8 11778.1 11920.5 12522.4 12079.6 12294.1

13145.7 13016.2 13222.9 13203.7 12639.4 12776.5 12560.4

12906.6 12974.6 12899.3 12797.1 12564.3 12839.9 12519.8

14000

11000

SAT solver
runtime (s)

Null

-efast

-eness

-enirr

-eonset

-estrong

E
S
P
R
E
S
S
O

op
ti
on

fo
r
f
(1

)
⟨8

,8
,4
⟩

98989.2 99025.2 98979.2 98959.5 99732.7 99043.8 99737.5

110526.9 110405.3 110536.8 110656.5 111100.1 110600.9 110757.0

107235.3 107833.3 107585.2 107247.2 107255.6 107148.0 107725.2

104621.1 104631.3 104508.7 104651.0 105251.6 104810.1 105023.4

13245.9 13116.4 13323.2 13303.9 12738.4 12876.8 12659.4

113958.8 114026.8 113951.6 113849.4 113615.3 113892.2 113570.8

120000

10000

Total
runtime (s)

Figure 7: Test results for two-step encoding method regarding S8.

140 SoK: Modeling for Large S-boxes

S
-l
ay
er

≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

⊕
R
K

i
⊕
c i

Figure 8: Round function of PIPO.

7.1 Description of PIPO
PIPO is a lightweight block cipher proposed at ICISC 2020 by Kim et al. [KJK+20]. It
is a 64-bit block cipher with two instances that accept 128-bit and 256-bit keys, and we
distinguish between them using the notations PIPO-128 and PIPO-256. The number of
rounds r during encryption is dependent on the size of the key: r = 13 for PIPO-128 and
r = 17 otherwise.

The internal state is regarded as an 8× 8 square array of bits during the encryption
and decryption processes. We refer to X as the internal state and X[i] as the i-th row of
X for 0 ⩽ i ⩽ 7. Plaintext m = m63∥m62∥ · · · ∥m0 is supplied to the cipher. The internal
state is initialised by setting X in the following manner

X =

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]

=

m7 m6 m5 m4 m3 m2 m1 m0
m15 m14 m13 m12 m11 m10 m9 m8
m23 m22 m21 m20 m19 m18 m17 m16
m31 m30 m29 m28 m27 m26 m25 m24
m39 m38 m37 m36 m35 m34 m33 m32
m47 m46 m45 m44 m43 m42 m41 m40
m55 m54 m53 m52 m51 m50 m49 m48
m63 m62 m61 m60 m59 m58 m57 m56

.

The key schedule is quite simple.

▷ The 128-bit master key K is divided into two 64-bit subkeys K0 and K1 as K =
K1∥K0 for PIPO-128. The whitening and round keys are defined as RKi = Ki mod 2,
where i = 0, 1, . . . , 13.

▷ The 256-bit master key K in PIPO-256 is divided into four 64-bit subkeys K0, K1,
K2, and K3 as K = K3∥K2∥K1∥K0. The setting for the whitening and round keys
is RKi = Ki mod 4, i = 0, 1, . . . , 17.

Before running the round function in both variants, the whitening key RK0 is XORed
with the internal state.

One encryption round in PIPO consists of the following three operations: S-layer,
R-layer, and round key and constant XOR. See Figure 8 for a demonstration of the round
function.

S-layer An 8-bit S-box denoted as S8 is applied to each column of the 8× 8 square array
of bits, with the uppermost bit being the least significant. The definition of S8 is
available in [KJK+20].

R-layer The rows of the array of cipher state bits are rotated in this layer, as depicted in
Figure 8.

Round key and constant XOR Internal state is XORed with the i-th round key RKi and
the i-th constant ci = i, where 1 ⩽ i ⩽ r.

Ling Sun and Meiqin Wang 141

7.2 Related-Key Differential Properties of PIPO-128
We analyse the related-key differential properties of PIPO-128 using the S-box modelling
method in Section 5.1 and list the test results in Table 7. In [YK21], Yadav and Kumar
showed a 2-round iterative related-key differential characteristic with probability 2−4 and
construct a full-round characteristic with probability 2−24 for PIPO-128. This result is
consistent with their findings. Beyond this, we discover that PIPO-128 has 1792 full-
round characteristics with a probability of 2−24. Figure 9 provides a visual depiction of
these characteristics. There are 224 possible propagations for the DDT of S8, with a
probability of 2−4. In addition, the differential propagation α7∥α6∥α5∥α4∥α3∥α2∥α1∥α0 →
β7∥β6∥β5∥β4∥β3∥β2∥β1∥β0 depicted in Figure 9 can also be placed in the remaining seven
columns. These explain the origin of the 1792(= 224× 8) differential characteristics.

Table 7: Related-key differential properties of PIPO-128.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13
Active S-box 0 0 1 2 2 3 3 4 4 5 5 6 6
− log2(p) 0 0 4 8 8 12 12 16 16 20 20 24 24

∆X2·r

S
-l
ay
er

Input
∆Y2·r

≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

∆RK2·r

α0

α1

α2

α3

α4

α5

α6

α7

α0

α1

α2

α3

α4

α5

α6

α7

Output if r = 6

Output

∆X2·r+1

α0

α1

α2

α3

α4

α5

α6

α7

S
-l
ay
er

∆Y2·r+1

β0

β1

β2

β3

β4

β5

β6

β7≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

β0

β1

β2

β3

β4

β5

β6

β7

∆RK2·r+1

β0

β1

β2

β3

β4

β5

β6

β7

Iterated for r = 1, 2, · · · , 6

Figure 9: Full-round related-key differential characteristic with probability 2−24 for
PIPO-128. α7∥α6∥α5∥α4∥α3∥α2∥α1∥α0 → β7∥β6∥β5∥β4∥β3∥β2∥β1∥β0 represents a possi-
ble differential propagation for the S-box with probability 2−4.

7.3 Related-Key Differential Properties of PIPO-256
The new encoding strategy for large S-boxes in Section 5.1 is employed to examine the
related-key differential properties of PIPO-256. The results are summarised in Table 8. It
can be notice that there exists a full-round differential characteristic with probability 2−16,
and a further investigation shows that there are 5376 full-round differential characteristic
with probability 2−16. An illustration for the full-round characteristic can be found in
Figure 10. Similar to PIPO-128, the differential propagation α7∥α6∥α5∥α4∥α3∥α2∥α1∥α0 →

142 SoK: Modeling for Large S-boxes

β7∥β6∥β5∥β4∥β3∥β2∥β1∥β0 with probability 2−4 offers 224 options, and the propagation
of Figure 10 may be inserted in the remaining seven columns. In addition, the input
location of the 17-round distinguisher can be moved to the ∆X4·r+1 or ∆X4·r+3 positions
of Figure 10. Taking all of these facts into account, it is possible to explain the origin of
the 5376(= 224× 8× 3) differential characteristics.

Table 8: Related-key differential properties of PIPO-256.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Active S-box 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3 4 4
− log2(p) 0 0 0 0 4 4 4 8 8 8 8 12 12 12 12 16 16

∆X4·r

S
-l
ay
er

Input
∆Y4·r

≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

∆RK4·r

∆X4·r+1

Output if r = 4

Output

S
-l
ay
er

∆Y4·r+1

≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

∆RK4·r+1

α0

α1

α2

α3

α4

α5

α6

α7

α0

α1

α2

α3

α4

α5

α6

α7

∆X4·r+2

α0

α1

α2

α3

α4

α5

α6

α7

S
-l
ay
er

∆Y4·r+2

β0

β1

β2

β3

β4

β5

β6

β7≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

β0

β1

β2

β3

β4

β5

β6

β7

∆RK4·r+2

β0

β1

β2

β3

β4

β5

β6

β7

∆X4·r+3

S
-l
ay
er

∆Y4·r+3

≪ 2

≪ 1

≪ 5

≪ 6

≪ 3

≪ 4

≪ 7

R-layer

∆RK4·r+3

Iterated for r = 1, 2, 3, 4

Figure 10: Full-round related-key differential characteristic with probability 2−16 for
PIPO-256. α7∥α6∥α5∥α4∥α3∥α2∥α1∥α0 → β7∥β6∥β5∥β4∥β3∥β2∥β1∥β0 represents a possi-
ble differential propagation for the S-box with probability 2−4.

8 Application to AES-Based Constructions
Jean and Nikolić [JN16] suggested a number of AES-based constructions that can be utilised
as building blocks for Message Authentication Codes (MACs) and Authenticated Encryption
(AE) schemes. They intended to explore the efficiency boundaries of constructions that
may be realised with AES-NI instruction aesenc, which executes one round of AES. The
internal states of the designs are made up of many 128-bit words, known as blocks, and
the step functions are based only on aesenc and bitwise XOR operations. The state size,
the amount of aesenc calls each step, and the selection of state words to which aesenc is
applied assure the high efficiency of the designs.

In addition to the efficiency, Jean and Nikolić were particularly concerned with the
security of the designs. Since the most common attacks against MACs and AE are internal
collisions based on high probability differential characteristics that begin and end with zero
state differences, the security of these constructions is determined by counting the number
of active S-boxes required to produce an internal collision. The minimum number of active
S-boxes should be 22, given that the key size is 128 bits and the maximum differential
probability of the S-box in AES is 2−6. Jean and Nikolić used a MILP-based search to
determine the number of active S-boxes and provided seven secure constructions C1 - C7

Ling Sun and Meiqin Wang 143

(cf. Figure 11(a) - Figure 11(g)) with excellent state size and efficiency trade-offs. The
lower bounds for the number of active S-boxes for C1 - C7 using the MILP model are listed
in Table 9, however the number of step functions necessary to attain the lower bound is
not specified. As noted by the authors, the automatic search strategy they employ targets
truncated differentials. There may not be a true differential characteristic that corresponds
to the search outcomes. In other words, it is possible that the security of these structures
was underestimated.

Ai Bi Ci Di Ei Fi

A A A A A A

Mi,1 Mi,1 Mi,2 Mi,2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1

(a) Step function of C1.

Ai Bi Ci Di Ei Fi Gi Hi Ii

A A A A A A A A A

Mi,1 Mi,1 Mi,2 Mi,2 Mi,3 Mi,3

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1 Ii+1

(d) Step function of C4.

Ai Bi Ci Di Ei Fi Gi

A A A A A A

Mi,1 Mi,1 Mi,2 Mi,2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1

(b) Step function of C2.

Ai Bi Ci Di Ei Fi Gi

A A A A A

Mi,1 Mi,1 Mi,1 Mi,1 Mi,2 Mi,2 Mi,2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1

(e) Step function of C5.

Ai Bi Ci Di Ei Fi Gi Hi

A A A A A A

Mi,1 Mi,1 Mi,2 Mi,2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

(c) Step function of C3.

Ai Bi Ci Di Ei Fi Gi Hi

A A A A A

Mi,1 Mi,1 Mi,1 Mi,1 Mi,2 Mi,2 Mi,2 Mi,2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

(f) Step function of C6.

Ai Bi Ci Di Ei Fi Gi Hi Ii Ji Ki Li

A A A A A A

Mi,1 Mi,1 Mi,1 Mi,2 Mi,2 Mi,2 Mi,3 Mi,3 Mi,3 Mi,1 Mi,2 Mi,3

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1 Ii+1 Ji+1 Ki+1 Li+1

(g) Step function of C7.

Figure 11: Step functions of C1 - C7. Ai, Bi, . . ., Li are input blocks for the i-th step
function. Ai+1, Bi+1, . . ., Li+1 are output blocks for the i-th step function. A represents
one-round of AES. Mi,1, Mi,2, and Mi,3 are message blocks incorporated at the i-th step.

Abdelkhalek et al. [AST+17] were aware of this issue and analysed the security of
two arbitrarily selected constructions, i.e., C5 and C1, using the MILP model for large
S-boxes (cf. Table 9). They demonstrated that it is impossible for C5 to have any 4-step
truncated differential characteristics with no more than 23 active S-boxes. Therefore, they
concluded that the minimum number of active S-boxes for C5 is 24, an increase from the
initial estimate of 22 by the designers. For C1, they confirmed that the minimal number of
active S-boxes required to cause a collision is 22, while the best differential characteristic
has a probability of 2−134, as opposed to 2−132.

In this study, the encoding approach for large S-boxes proposed in Section 5.1 is applied
to the constructions C1 - C7. The SAT method is used to determine the minimum number
of active S-boxes necessary to cause an internal collision. All seven constructions, ranging
from two to eight steps, are analysed. The test outcomes are shown in Table 9.

8.1 Results on C1

For the construction C1, we first verify that no differential characteristic may lead to an
internal collision if the number of steps ns is fixed at 2. When ns ⩾ 3, the lower bound on
the number of active S-boxes reaches 22, in agreement with the analyses in [JN16] and

144 SoK: Modeling for Large S-boxes

Table 9: Lower bound on the number of active S-boxes for C1 - C7.

C1 C2 C3 C4 C5 C6 C7
Ref.

ns #S ns #S ns #S ns #S ns #S ns #S ns #S

- 22 - 25 - 34 - 25 - 22 - 23 - 25 [JN16]
3-7 22 - - - - - - 4-7 24 - - - - [AST+17]
2 p 2 p 2 p 2 p 2 p 2 p 2 48

Section 8

3 22 3 50 3 47 3 33 3 40 3 48 3 48
4 22 4 25 4 47 4 25 4 25 4 > 41 4 > 37
5 22 5 25 5 36 5 25 5 25 5 23 5 28
6 22 6 25 6 36 6 25 6 25 6 23 6 28
7 22 7 25 7 36 7 25 7 25 7 23 7 > 24
8 22 8 25 8 36 8 25 8 25 8 23 8 > 24

ns: The number of step functions. #S: The number of active S-boxes.
-: No information is provided.
p: There is no differential characteristic with the specified number of step functions.

[AST+17]. According to our analysis of all 3-step differential characteristics with 22 active
S-boxes, there are a total of four differential patterns (cf. Supplementary Material), which
match to the four patterns described in [AST+17].

In addition to examining the lower bound on the number of active S-boxes, Abdelkhalek
et al. [AST+17] evaluate the upper bound on the differential probability for 3-step
differential characteristics. The probability upper bound is demonstrated by analysing
each of the four differential patterns and determining that not all of the active S-boxes in
the characteristic attain the optimal probability, say 2−6. We also study the upper bound
on the differential probability for C1 using the automatic technique. The SAT modelling
approach described in Section 5.1 for large S-boxes oriented to differential probability is
implemented. The test results validate the conclusion presented by Abdelkhalek et al.,
namely that the maximum differential probability for 3-step characteristics that facilitate
an internal collision is 2−134. Figure 12 demonstrates a newly identified 3-step differential
characteristic with a probability of 2−134.

8.2 Results on C2

For C2, we first determine that there is no differential characteristic that would support an
internal collision if the number of steps ns is set at 2. When ns is set to 3, the minimum
number of active S-boxes is 50. When ns ⩾ 4, the minimum number of active S-boxes
for differential characteristics guaranteeing an internal collision reaches 25, as specified
in [JN16]. The differential patterns of all 4-step differential characteristics of 25 active
S-boxes are analysed, resulting in a total of 16 differential patterns. The 16 differential
patterns are supplied in the Supplementary Material.

8.3 Results on C3

For C3, we begin by ensuring that, while the number of steps ns is set at 2, there are no
differential characteristics that might cause an internal collision. The minimum number of
active S-boxes for differential characteristics is 47 when ns is set to 3 or 4. For ns ⩾ 5,
we discover that the minimum number of active S-boxes for differential characteristics is
36, and this bound holds for up to eight steps. Given the 34 active S-boxes established
by [JN16], our new result increases the lower bound on the number of active S-boxes
for C3. There are 32 differential patterns after analysing the differential patterns of all
5-step differential characteristics with 36 active S-boxes. The 32 differential patterns are
presented in the Supplementary Material.

Ling Sun and Meiqin Wang 145

8.4 Results on C4

For the C4 construction, we first discover that if the number of steps ns is set at 2, no
differential characteristic can sustain an internal collision. When ns is increased to 3, the
number of active S-boxes for differential characteristics reaches a minimum of 33. If ns is
set to 4, the minimum number of active S-boxes is reduced to 25; this bound is consistent
with the one provided by [JN16]. The differential patterns of all 4-step characteristics with
25 active S-boxes are then analysed, and a total of 12 differential patterns are discovered.
The 12 differential patterns can be seen in the Supplementary Material.

A0

MC◦SR◦SB

B0

MC◦SR◦SB

C0

MC◦SR◦SB

D0

MC◦SR◦SB

E0

MC◦SR◦SB

F0

MC◦SR◦SB

A1

e4

B1

e4

C1 D1

e4

E1

e4

F1

M0,1

e4

M0,1 M0,1 M0,2

e4

M0,2 M0,2

SB

SR

MC

0a

SB

0a

SR

14

0a

0a

1e

MC

0a

SB

0a

SR

14

0a

0a

1e

MC

SB

SR

MC

0a

SB

0a

SR

14

0a

0a

1e

MC

0a

SB

0a

SR

14

0a

0a

1e

MC

14

0a

0a

1e

A2

f0

0a

0a

1e

B2

e4

C2

14

0a

0a

1e

D2

f0

0a

0a

1e

E2

e4

F2

M1,1

f0

0a

0a

1e

M1,1 M1,1 M1,2

f0

0a

0a

1e

M1,2 M1,2

ef

04

04

11

SB

ef

04

04

11

SR

0c c5 11 04

08 ef 11 0c

04 ef 33 08

04 2a 22 04

MC

ef

04

04

11

SB

ef

04

04

11

SR

0c c5 11 04

08 ef 11 0c

04 ef 33 08

04 2a 22 04

MC

0a

SB

0a

SR

14

0a

0a

1e

MC

99

04

04

11

SB

99

04

04

11

SR

0c 29 11 04

08 99 11 0c

04 99 33 08

04 b0 22 04

MC

99

04

04

11

SB

99

04

04

11

SR

0c 29 11 04

08 99 11 0c

04 99 33 08

04 b0 22 04

MC

0a

SB

0a

SR

14

0a

0a

1e

MC

A3 B3 C3 D3 E3 F3

M2,1

0c c5 11 04

08 ef 11 0c

04 ef 33 08

04 2a 22 04

M2,1 M2,1 M2,2

0c 29 11 04

08 99 11 0c

04 99 33 08

04 b0 22 04

M2,2 M2,2

An active S-box with probability 2−6 An active S-box with probability 2−7 A byte with nonzero difference An inactive S-box

Figure 12: 3-step differential characteristic of probability 2−134 for C1.

146 SoK: Modeling for Large S-boxes

8.5 Results on C5

For the construction C5, when the number of step functions ns is fixed at 2, there is no
differential characteristic that may cause an internal collision, and an internal collision is
only feasible if ns ⩾ 3. When ns is set to 3, there must be at least 40 active S-boxes for
differential characteristics to cause a collision. The minimum number of active S-boxes is
reduced to 25 when ns = 4. Table 9 demonstrates that our results raise the lower bound
on the number of active S-boxes for C5 when compared to those of [AST+17] and [JN16].
We examine the 4-step differential characteristics of 25 active S-boxes and discover that all
of these characteristics can be classified into 12 differential patterns. The 12 differential
patterns are available in the Supplementary Material.

8.6 Results on C6

First, we verify that 2-step differential characteristics cannot lead to an internal collision
for C6. When the number of steps ns is set to 3, the minimum number of active S-boxes is
determined to be 48. Due to the extremely lengthy runtime of the SAT solver, when ns is
fixed to 4, we only validate that all 4-step differential characteristics have more than 41
active S-boxes, but we cannot guarantee an exact lower bound for the number of active
S-boxes. For ns ⩾ 5, the minimum number of active S-boxes is confirmed to be 23; this
value corresponds to the one specified in [JN16].

8.7 Results on C7

For the C7 construction, we find that 2-step differential characteristics can lead to an
internal collision, and that the minimal number of active S-boxes is 48. When ns is set
to 3, the minimum number of active S-boxes remains unchanged. For 4-step differential
characteristics, we only validate that the minimal number of active S-boxes is more than 37,
and the concrete bound cannot be determined until the SAT solver is run for an extremely
long period of time. The minimum number of active S-boxes is 28 when ns = 5 or 6.
Due to the restricted problem-solving capacity of the SAT solver, the lower bound on the
number of active S-boxes for ns ⩾ 7 is uncertain. We only validate that the minimum
number of active S-boxes exceeds 24, tying the result with [JN16].

9 Conclusion

This study begins with a summary of the MILP and SAT modelling developments for
large S-boxes. Then, we provide three techniques for quickly constructing SAT models
for large S-boxes oriented to differential probabilities and linear correlations. The newly
suggested encoding techniques are initially used to the analysis of SKINNY-128. Comparing
the runtime of alternative encoding techniques for S-boxes reveals that the first encoding
approach achieves a good compromise between the runtime of ESPRESSO and the execution
time of the SAT solver. On the other hand, we determine that the upper bound on the
differential probability for 14 rounds of SKINNY-128 is 2−131, completing the remaining
work of Abdelkhalek et al. The first approach of encoding large S-boxes is also implemented
on PIPO and the seven AES-based constructions C1 - C7. For two constructions C3 and
C5, the current lower bound on the number of active S-boxes is lifted, resulting in a more
precise security analysis for these two structures. Additionally, all differential patterns for
C1 - C5 that achieve a minimum number of active S-boxes are reported.

Ling Sun and Meiqin Wang 147

Acknowledgments
The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper. The research leading to these results
has received funding from the National Natural Science Foundation of China (Grant No.
62272273, Grant No. 62002201, Grant No. 62032014), the National Key Research and
Development Program of China (Grant No. 2018YFA0704702), and the Major Basic
Research Project of Natural Science Foundation of Shandong Province, China (Grant No.
ZR202010220025).

References
[AK18] Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security

of block ciphers against differential cryptanalysis. In Selected Areas in Cryp-
tography - SAC 2018 - 25th International Conference, Calgary, AB, Canada,
August 15-17, 2018, Revised Selected Papers, pages 163–190, 2018.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) S-boxes to optimize probability of dif-
ferential characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129,
2017.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials. In Jacques Stern, editor, Advances
in Cryptology - EUROCRYPT ’99, International Conference on the Theory
and Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science,
pages 12–23. Springer, 1999.

[BC20] Christina Boura and Daniel Coggia. Efficient MILP modelings for Sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–
361, 2020.

[BDG+21] Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei
Sun, and Xiaoyun Wang. Automatic search of meet-in-the-middle preimage
attacks on AES-like hashing. In Anne Canteaut and François-Xavier Stan-
daert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I, volume
12696 of Lecture Notes in Computer Science, pages 771–804. Springer, 2021.

[BHH+82] Robert K Brayton, GD Hachtel, LA Hemachandra, AR Newton, and ALM
Sangiovanni-Vincentelli. A comparison of logic minimization strategies using
espresso: An apl program package for partitioned logic minimization. In
Proceedings of the International Symposium on Circuits and Systems, pages
42–48, 1982.

[BHMS84] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis,
volume 2 of The Kluwer International Series in Engineering and Computer
Science. Springer, 1984.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The

148 SoK: Modeling for Large S-boxes

SKINNY family of block ciphers and its low-latency variant MANTIS. In Ad-
vances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, pages 123–153, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007.

[Bro81] Douglas W. Brown. A state-machine synthesizer - SMS. In Robert J.
Smith, editor, Proceedings of the 18th Design Automation Conference, DAC
’81, Nashville, Tennessee, USA, June 29 - July 1, 1981, pages 301–305.
ACM/IEEE, 1981.

[Bro83] Arne Brondsted. An introduction to convex polytopes, volume 90. Springer
Science & Business Media, 1983.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-based
automatic search algorithms for differential and linear trails for Speck. In Fast
Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, pages 268–288, 2016.

[GD07] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Werner Damm and Holger Hermanns, editors, Computer Aided
Verification, 19th International Conference, CAV 2007, Berlin, Germany, July
3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science,
pages 519–531. Springer, 2007.

[GKPS67] Branko Grünbaum, Victor Klee, Micha A Perles, and Geoffrey Colin Shephard.
Convex polytopes, volume 16. Springer, 1967.

[GO04] Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and
Computational Geometry, Second Edition. Chapman and Hall/CRC, 2004.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[HCO74] Se June Hong, Robert G. Cain, and Daniel L. Ostapko. MINI: A heuristic
approach for logic minimization. IBM J. Res. Dev., 18(5):443–458, 1974.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES
round function. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 334–353. Springer, 2016.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 274–288.
Springer, 2014.

Ling Sun and Meiqin Wang 149

[KJK+20] Hangi Kim, Yongjin Jeon, Giyoon Kim, Jongsung Kim, Bo-Yeon Sim, Dong-
Guk Han, Hwajeong Seo, Seonggyeom Kim, Seokhie Hong, Jaechul Sung, and
Deukjo Hong. PIPO: A lightweight block cipher with efficient higher-order
masking software implementations. In Deukjo Hong, editor, Information
Security and Cryptology - ICISC 2020 - 23rd International Conference, Seoul,
South Korea, December 2-4, 2020, Proceedings, volume 12593 of Lecture Notes
in Computer Science, pages 99–122. Springer, 2020.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON
block cipher family. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 161–185, 2015.

[LLL+19] Yu Liu, Huicong Liang, Muzhou Li, Luning Huang, Kai Hu, Chenhe Yang,
and Meiqin Wang. STP models of optimal differential and linear trail for
S-box based ciphers. IACR Cryptol. ePrint Arch., 2019:25, 2019.

[LS22] Ting Li and Yao Sun. Superball: A new approach for MILP modelings of
Boolean functions. IACR Trans. Symmetric Cryptol., 2022(3):341–367, 2022.

[LWR16] Yunwen Liu, Qingju Wang, and Vincent Rijmen. Automatic search of linear
trails in ARX with applications to SPECK and Chaskey. In Applied Cryp-
tography and Network Security - 14th International Conference, ACNS 2016,
Guildford, UK, June 19-22, 2016. Proceedings, pages 485–499, 2016.

[McC56] Edward J McCluskey. Minimization of boolean functions. The Bell System
Technical Journal, 35(6):1417–1444, 1956.

[MP13] Nicky Mouha and Bart Preneel. Towards finding optimal differential char-
acteristics for ARX: Application to Salsa20. Technical report, Cryptology
ePrint Archive, Report 2013/328, 2013.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Information
Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing,
China, November 30 - December 3, 2011. Revised Selected Papers, pages 57–76,
2011.

[Pet56] Stanley R Petrick. A direct determination of the irredundant forms of a
Boolean function from the set of prime implicants. Air Force Cambridge Res.
Center Tech. Report, pages 56–110, 1956.

[Qui52] Willard V Quine. The problem of simplifying truth functions. The American
mathematical monthly, 59(8):521–531, 1952.

[Qui55] Willard V Quine. A way to simplify truth functions. The American mathe-
matical monthly, 62(9):627–631, 1955.

[Ric11] S Rickmann. Logic friday (version 1.1.3) [computer software], 2011.

[SGL+17] Siwei Sun, David Gérault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. Analysis of AES, SKINNY, and others with constraint
programming. IACR Trans. Symmetric Cryptol., 2017(1):281–306, 2017.

[SHW+14a] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
Danping Shi, and Ling Song. Automatic enumeration of (related-key) differen-
tial and linear characteristics with predefined properties and its applications.
IACR Cryptol. ePrint Arch., page 747, 2014.

150 SoK: Modeling for Large S-boxes

[SHW+14b] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, pages 158–178, 2014.

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential
analysis of ARX block ciphers with application to SPECK and LEA. In
Information Security and Privacy - 21st Australasian Conference, ACISP
2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings, Part II, pages
379–394, 2016.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Oliver Kullmann, editor, Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture
Notes in Computer Science, pages 244–257. Springer, 2009.

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the Demirci-Selçuk meet-in-the-middle attack with constraints.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology
- ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part II, volume 11273 of Lecture Notes in
Computer Science, pages 3–34. Springer, 2018.

[ST17] Yu Sasaki and Yosuke Todo. New algorithm for modeling S-box in MILP
based differential and division trail search. In Pooya Farshim and Emil
Simion, editors, Innovative Security Solutions for Information Technology and
Communications - 10th International Conference, SecITC 2017, Bucharest,
Romania, June 8-9, 2017, Revised Selected Papers, volume 10543 of Lecture
Notes in Computer Science, pages 150–165. Springer, 2017.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based
division property for ARX ciphers and word-based division property. In
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, pages 128–157, 2017.

[SWW18] Ling Sun, Wei Wang, and Meiqin Wang. More accurate differential properties
of LED64 and Midori64. IACR Trans. Symmetric Cryptol., 2018(3):93–123,
2018.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the SAT method. IACR Trans. Symmetric
Cryptol., 2021(1):269–315, 2021.

[The22] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 1.4.2), 2022. https://www.sagemath.org.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, pages
250–279, 2017.

Ling Sun and Meiqin Wang 151

[Udo21] Aleksei Udovenko. MILP modeling of Boolean functions by minimum number
of inequalities. IACR Cryptol. ePrint Arch., page 1099, 2021.

[WHG+19] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided
method of searching division property using three subsets and applications.
In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in Computer
Science, pages 398–427. Springer, 2019.

[WW11] Shengbao Wu and Mingsheng Wang. Security evaluation against differential
cryptanalysis for block cipher structures. IACR Cryptol. ePrint Arch., page
551, 2011.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, pages 648–678, 2016.

[YK21] Tarun Yadav and Manoj Kumar. MILES: modeling large S-box in MILP
based differential characteristic search. IACR Cryptol. ePrint Arch., page
1388, 2021.

[Zie07] Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science &
Business Media, 2007.

	Introduction
	Preliminary
	Notations
	Sum of Products and Product of Sums
	SAT Problem and POS Form Simplification
	Quine-McCluskey Algorithm
	ESPRESSO Logic Minimizer

	MILP Modelling Progress for Large S-boxes
	First Bit-Oriented Model for S-boxes
	Modelling for Large S-boxes
	Efficient Modelling for Large S-boxes
	Modelling by Minimum Number of Inequalities

	SAT/SMT Modelling Progress for S-boxes
	Logical Condition Modelling
	Logical Condition Modelling Using Simplification
	SMT Modelling for Large S-boxes

	Fast SAT Models for Large S-boxes
	Trade-off Between Level of Simplification and Time
	Two-Step Encoding Method
	Simplifying by Partitioning Method

	Tight Probability Bound for 14 Rounds of SKINNY-128
	Specification of SKINNY-128
	Tight Probability Bound for 14-Round of SKINNY-128
	Runtime with Different Encoding Methods for S-boxes

	Related-Key Differential Properties of PIPO
	Description of PIPO
	Related-Key Differential Properties of PIPO-128
	Related-Key Differential Properties of PIPO-256

	Application to AES-Based Constructions
	Results on C1
	Results on C2
	Results on C3
	Results on C4
	Results on C5
	Results on C6
	Results on C7

	Conclusion

