
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 1, pp. 41–66. DOI:10.46586/tosc.v2023.i1.41-66

Attacking the IETF/ISO Standard for Internal
Re-keying CTR-ACPKM

Orr Dunkelman, Shibam Ghosh and Eran Lambooij

Department of Computer Science, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il,sghosh03@campus.haifa.ac.il,eran@hideinplainsight.io

Abstract. Encrypting too much data using the same key is a bad practice from a
security perspective. Hence, it is customary to perform re-keying after a given amount
of data is transmitted. While in many cases, the re-keying is done using a fresh
execution of some key exchange protocol (e.g., in IKE or TLS), there are scenarios
where internal re-keying, i.e., without exchange of information, is performed, mostly
due to performance reasons.
Originally suggested by Abdalla and Bellare, there are several proposals on how
to perform this internal re-keying mechanism. For example, Liliya et al. offered
the CryptoPro Key Meshing (CPKM) to be used together with GOST 28147-89
(known as the GOST block cipher). Later, ISO and the IETF adopted the Advanced
CryptoPro Key Meshing (ACKPM) in ISO 10116 and RFC 8645, respectively.
In this paper, we study the security of ACPKM and CPKM. We show that the
internal re-keying suffers from an entropy loss in successive repetitions of the re-
keying mechanism. We show some attacks based on this issue. The most prominent
one has time and data complexities of O(2κ/2) and success rate of O(2−κ/4) for a
κ-bit key.
Furthermore, we show that a malicious block cipher designer or a faulty implemen-
tation can exploit the ACPKM (or the original CPKM) mechanism to significantly
hinder the security of a protocol employing ACPKM (or CPKM). Namely, we show
that in such cases, the entropy of the re-keyed key can be greatly reduced.
Keywords: CTR-ACPKM · Multi-user Attack · Entropy Loss · Key Collision

1 Introduction
A common security-enhancing practice is to restrict the duration in which a given key is
used. This is done, for example, as a simple mitigation to attacks relying on collisions, such
as Sweet32 [BL16]. It is thus, customary to change the encryption key after a set amount
of time or encryptions. The maximum amount of data that can be safely encrypted under
a single key in any cryptographic protocol is called the key lifetime.

Changing the key usually requires to run a key-exchange protocol, which can incur high
computation and communication costs. This inspired further research on re-keying the
existing secret key without running a key-exchange protocol.

To avoid frequent updates of the key, there are several ways of extending the key
lifetime in symmetric key cryptosystems. One of these mechanisms, originally suggested
by Abdalla and Bellare [AB00], is the internal re-keying mechanism. This mechanism
generates a new secret key Ki for the i-th epoch based on the previous key(s).

The re-keying mechanism can occur in various protocol levels: At the block cipher level
(fresh re-keying [DFH+16]), at the mode of operation level (internal re-keying [AAOS17,
Smy19]), and at the protocol level (external re-keying [AAOS17, Smy19]).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-11-23 Accepted: 2023-01-23 Published: 2023-03-10

https://doi.org/10.46586/tosc.v2023.i1.41-66
mailto:orrd@cs.haifa.ac.il, sghosh03@campus.haifa.ac.il, eran@hideinplainsight.io
http://creativecommons.org/licenses/by/4.0/

42 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

In this paper, we study the security of an internal re-keying mechanism called Advanced
CryptoPro Key Meshing (ACPKM) [Smy19] and its predecessor CryptoPro Key Meshing
(CPKM) [PLK06]. The main idea behind these two internal re-keying mechanisms is to
call a key update function after a key is used to encrypt a pre-defined number of blocks
(i.e., a section). The ACPKM transformation generates a new key by encrypting one or
more public constants with the previous key.

We provide a security analysis of CTR-ACPKM [AAS18], which combines the counter
mode (CTR) operation using the ACPKM mechanism for internal re-keying. The CTR-ACPKM
mode is currently passing through the last formal standardization process in IETF
(CFRG) [Smy19] and was standardized by ISO (ISO 10116) [ISO]. Also, the internal
re-keying technique is being widely used in the Russian variants of TLS [ANI+08] and
CMS [LC06]. Thus, it is essential to analyze the security of these mechanisms as tens, if
not hundreds, of millions of users are relying on their security.

1.1 Related Work
The re-keying mechanism was first introduced by Abdalla and Bellare in [AB00]. The idea
is that frequent re-keying increases the security as well the key lifetime. An interesting
proposal for a re-keying mechanism is CPKM [PLK06], used with the GOST 28147-89
cipher (which today is called MAGMA). This method generates a new key in the following
manner:

Ki+1 = E−1
Ki

(D1)∥E−1
Ki

(D2)∥E−1
Ki

(D3)∥E−1
Ki

(D4)

for some constants D1, D2, D3 and D4. Its security properties when combined with the
CTR mode of operation are analyzed by Liliya et al. in [AAO+16].

Since counter mode does not use decryption, the use of decryption in the CPKM
mechanism is considered a drawback. Another drawback is that the inputs to the block
cipher may collide with the constants used for the key generation. When this happens (i.e.,
when Di is equal to some output of the block cipher), information about the key leaks.
This would of course result in a trivial attack.

The ACPKM (advanced CPKM) mechanism, proposed in CTCrypt’2016, addresses one
of these problems. The new method generates a new key in the following way:

Ki+1 = EKi(D1)∥ · · · ∥EKi(Dr)

for some carefully chosen constants D1, D2, D3, ..., Dr. As a result there is no need to
implement decryption, and if ACPKM is used in a mode of operation where the user cannot
control the input to the cipher, such as in CTR-mode, then the second problem is avoided.

The security of CTR-ACPKM was analyzed in [AAS18]. In [AASO20], Liliya et al.,
analyse ACPKM in combination with the GCM mode of operation (GCM-ACPKM). The
analysis of CTR-ACPKM in [AAS18] claims IND-CPNA security (indistinguishability
under Chosen Plaintext and Nonce Attack) model. The claimed bound on the IND-CPNA
advantage is

(σ1 + r)2 + . . . + (σℓ−1 + r)2 + σ2
ℓ

2n+1

where n is the block size, κ is the key size, σj is the total length of data blocks processed
under the j-th key (called a section), ℓ is the maximal number of sections, and r =

⌈
κ
n

⌉
.

This led both IETF and ISO to accept ACPKM as a mechanism for internal re-keying.
In this paper, we show that despite the security proof, the proposed update causes an
entropy drop in the key space. We show that this entropy loss impacts the security of
CTR-ACPKM and puts users at risk. We note that entropy loss of repeated invocations of
random functions has been studied before [FO89, FS09], as it also impacts the analysis
of MACs and hash functions [PvO96, LPW13, DL14]. A survey covering these attacks
can be found in [BGW18]. We build on these results and offer a somewhat more delicate

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 43

analysis of the entropy (specifically, we consider Shannon entropy rather than the H0
entropy considered and used in most previous works).

In addition, if the designer of a cipher can successfully embed a high probability
differential in the design (e.g., such as in the MALICIOUS framework [PW20]), then this
entropy loss can be significantly accelerated.1

1.2 The Multi User Security Setting
In the multi-user security setting the adversary is allowed to distribute its online queries
adaptively across multiple instances of the construction. This setting is originally proposed
in Biham’s technical report [Bih96, Bih02] and formalized by Bellare et al. [BBM00] in the
context of public-key encryption. In other words, the adversary can obtain the encryption
of a message with respect to a large number of users under independent keys K1, K2, ..., Ku.
For a nonce-based encryption algorithm, the adversary gets an encryption oracle that takes
an index i ∈ {1, 2, ..., u}, a message, and a nonce, and returns an encryption of these under
Ki. The attacker can fix a pair of nonce and message (N, M), and send them to different
users. Consequently, the attacker receives Ci = EKi(N, M) for each i = 1, 2, ..., u. Upon
receiving the responses, the attacker’s goal is to recover at least one of the users’ keys in a
key-recovery attack. In a distinguishing game the adversary gets an encryption oracle that
takes an index i ∈ {1, 2, ..., u}, a message, and a nonce, after which it returns either an
encryption of these under Ki in the real world or a random string of the same length in
the ideal world.

The key recovery attack in the multi-user setting is an important aspect to consider
from a mass-surveillance perspective, where billions of users use the same cryptographic
algorithm with independent keys (e.g., CTR-ACPKM [Smy19] or AES-GCM [BT16] is now
widely used in TLS [ANI+08] protocol to protect web traffic and is currently used by
billions of users daily). Due to its practical relevance, key recovery attacks in multi-user
setting have been studied in a series of work in the last few years [BBT16, BT16, BMS05,
BHT18, CMS11, HTT18, LMP17, ML15, MPS20].

1.3 Our Contributions
In this work, we propose several attacks on the CTR-CPKM and on the CTR-ACPKM mode.
These modes use the CPKM or the ACPKM internal re-keying technique to update the
key (i.e. generating a new key for each section of a hard drive). Our work studies the
entropy loss due to frequent re-keying using these schemes. Based on this entropy loss, we
propose three attacks on the CTR-ACPKM (or the CTR-CPKM) mode. Our first attack
is an improved exhaustive search. Secondly, we propose a distinguishing attack based
on key collisions, which are more frequent due to the entropy loss. Our third attack is a
key-recovery attack, motivated by [Bih96]. In the last two attacks, the adversary is modeled
in the multi-user security setting. Furthermore, we show that these attacks may be more
efficient when the key size is greater than the block size. Furthermore, our experiments on
several ciphers showed that the H1-entropy loss in the ACPKM transformation is much
more effective than the H0-entropy loss. Based on this, we propose an improved master-key
recovery attack.

In addition we propose two different attacks based on differential properties of the
underlying block cipher. The crucial part of these attacks is that updated keys can be

1One can argue that such ciphers, where we do not trust the designer, should not be accepted as
standards. However, as evident by reality, many times such ciphers are being selected for widely deployed
standards — e.g., the GEA-1 algorithm, the DUAL-EC DRBG, or Speck (which was standardized by ISO
in RFID communication standards). Furthermore, some people, e.g., residents of the Russian Federation,
must use some cryptographic standards that were not openly negotiated. Hence, it is important to
understand what level of security they can expect from a given system.

44 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

directly recovered if a differential property exists in the underlying block cipher. This may
occur either accidentally or if the cipher was backdoored. We want to mention that all the
attacks we have presented here are equally applicable to GCM-ACPKM [AASO20] due to
its similarity in the encryption part with CTR-ACPKM mode.

Next, we show that a malicious designer can further harm the mode, if a specific high
probability related-key differential or linear property exists in the underlying block cipher.
We show that such a property leads to a significantly higher entropy loss. Furthermore,
we show that even an innocent implementation error can lead to devastating attacks. This
issue may even be triggered when following the current ACPKM standard with a block
size that is not a power of two. Finally, we proposes a related-key distinguisher on the
CTR-ACPKM mode.

We discuss the attacks on the CTR-ACPKM mode, but these attacks trivially carry
over to the CTR-CPKM mode.

1.4 Organization of the Paper
We develop necessary notations and conventions in Section 2. In Section 3 we apply the
existing analysis to the ACPKM construction and analyse its security. Afterwards, in
Section 4, we refine the analysis of the loss of entropy and introduce new attacks based on
this analysis. In Section 5, we consider the misuse resistance of the ACPKM construction.
In Section 6 we discuss the security of ACPKM in the multi-user setting. Finally, we
conclude the paper in Section 7.

2 Preliminaries
For n ∈ N, [n] denotes the set {1, 2, . . . , n}. For any positive integer N and p, (N)p denotes
N(N− 1)...(N− p + 1). We refer to an element of {0, 1}n as block. For X ∈ {0, 1}∗, if ∥X∥
is a multiple of n, ∥X∥n denotes the length of X in n-bit blocks, i.e., ∥X∥n = ⌈∥X∥/n⌉.
For any non-empty binary string X, (X[1], . . . , X[k]) n← X denotes the n-bit block parsing
of X, where ∥X[i]∥ = n for 1 ≤ i ≤ k − 1, and 1 ≤ ∥X[k]∥ ≤ n. For X ∈ {0, 1}∗ and
a positive integer t ≤ ∥X∥, we use MSBt(X) and LSBt(X) to denote the bit string of
the t most significant bits and the t least significant bits of X, respectively. For any
non-negative integer I and t, we denote the t-bit representation of I with strt[I] where
the least significant bit is on the right. Similarly, from a bit string X ∈ {0, 1}t, we write
int(X) to denote the integer representation of X. For a positive integer c < n, let INCc(X)
be the function which takes the input X ∈ {0, 1}n and outputs the increment of X as

INCc(X) = MSBn−c(X)∥strc(int(LSBc(X)) + 1 mod 2c).

Consequently, we denote i consecutive increments as INCi
c(X) which is the composition of

the INCc function i times.

Definition 1. (H0-entropy) Let X be a discrete random variable such that Pr[X = x] > 0
for all x ∈ A. The H0-entropy is defined as

H0[X] = log(|A|).

Definition 2. (H1-entropy) Let X be a discrete random variable with possible outcomes
in the set A = {x1, x2, ..., xn}. The H1-entropy is defined as

H1[X] =
∑
x∈A

Pr[X = x] log2

(
1

Pr[X = x]

)
.

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 45

2.1 The CTR-ACPKM Internal Re-keying Mode
CryptoPro Key Meshing (CPKM) is an internal re-keying mode introduced in [PLK06].
However, several issues with performance and security led to an improved version of CPKM,
called ACPKM introduced in [Smy19]. RFC 8645 [Smy19] defines two kinds of internal
re-keying mechanisms, namely ACPKM and ACPKM-Master, where ACPKM stands
for Advanced Cryptographic Prolongation of Key Material. The ACPKM mode does not use
a master key, and the ACPKM-Master uses a master key during the key transformation. In
our discussion, we focus on the Counter mode of encryption with ACPKM transformation.
For a detailed discussion on the ACPKM-Master, we refer the interested reader to [Smy19].

The CTR-ACPKM encryption mode takes a key K ∈ {0, 1}κ, a nonce IV ∈ {0, 1}n
2

and a message M ∈ {0, 1}∗ and returns a ciphertext C ∈ {0, 1}|M|. We use the increment
function INC n

2
as used in [AAS18] to increment the counter. However, RFC 8645 docu-

mentation [Smy19] uses INCc with 32 ≤ c ≤ 3n
4 . In that case, IV ∈ {0, 1}n−c. Here let us

recall the notion of a section from [Smy19].

– A set of consecutive blocks encrypted under the same key is called a section. We use
s to denote the number of blocks in a section.

The CTR-ACPKM works as follows. At first the message M is divided into w = ⌈∥M∥n/s⌉
sections as

(M[1], M[2], ...M[s], M[s + 1], ..., M[(w − 1)s + r]) n← M,

where ∥M[i]∥ = n for each i ∈ {1, ..., (w− 1)s + (r− 1)} and 1 ≤ ∥M[(w− 1)s + r]∥ ≤ n for
some r ≤ s. So the α-th block in the β-th section is M[βs + α] for all β ∈ [0, w − 1] and
α ∈ [1, s]. In this mechanism the 0-th section of each message is processed by the CTR
mode of operation with the initial counter IV∥0 n

2 and K0 = K where K is the input key to
the process. The β-th section is encrypted by the CTR mode with the section key Kβ−1
without initializing the counter to 0, i.e., with the counter starting from βs. This section
key is calculated using the ACPKM transformation as follows:

Kβ = ACPKM(Kβ−1) = MSBκ(EKβ−1(D1)| · · · |EKβ−1(Dr))

where κ is the size of the key used in the block cipher EK and r = ⌈κ/n⌉. Thus we can view
the ACPKM transformation as a function from {0, 1}κ to itself. Moreover, D1, D2, ..., Dr

are pairwise different constants in {0, 1}n such that the n
2 -th bit (counting from the least

significant bit) of each Di is equal to 1. The plaintext length is at most 2 n
2 −1 blocks. Also,

the section size in bits must be divisible by the block size.
We note that both ISO 10116 [ISO] and RFC 8645 [Smy19] suggest the use of Di’s which

are a sequence of bytes whose most significant bits are set to 1: 80x, 81x, 82x, 83x, . . . , FFx.
This was done to ensure a complete domain separation between calls to E made during
encryption and the key update. As we discussed in Section 5.1 this separation does not
hold when a non-power of 2 block size is used.

3 Security Issues with the ACPKM Transformation
In this section we look at the security of multiple invocations of the ACPKM transformation.
First we note that a cipher with a fixed plaintext and a random key behaves like a random
function. This is a well known result and has, most notably, been used in the analysis of
Hellman’s time-memory trade-off attack [Hel80].

Another well-known fact is that the iterative application of a random function is
expected to reduce the H0-entropy of the image set [FO89]. We analyse how this loss of
H0-entropy impacts the security of the ACPKM construction and show how to use this to
recover section keys.

46 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

We denote the ACPKM transformation with key and block size κ by f : {0, 1}κ → {0, 1}κ.
We can now construct the functional graph Gf corresponding to the function f . Let
Gf = (Vf , Ef) where Vf = {0, 1}κ is the set of vertices and the set of edges, Ef , consists of
all the ordered pairs of the form (v, f(v)) for every vertex v ∈ {0, 1}κ. Statistical analysis
of a random function’s functional graph reveals some information about the function’s
multiple invocations. One of the most important properties we study here is the H0-entropy
loss on multiple invocations of the ACPKM transformation. Notably, we are interested in
the approximate size of the output set after, say, ν iterations of the ACPKM transformation
over {0, 1}κ. We recall the definition of the ν-th iterate image point from [FO89]:

Definition 3 (ν-th iterate image point [FO89]). A vertex in the functional graph Gf is
called an ν-th iterate image point if this is an image of the ν-th iterate fν of the function
f . We denote the set of all the ν-th iterate image points as Iν .

Flajolet and Odlyzko analyzed many properties of the functional graphs of random
functions [FO89]. We recall one result from [FO89] to motivate our analysis in Theorem 1.

Theorem 1 ([FO89]). If f : D→ D be random function over a domain D of size N = 2κ

with a functional graph Gf . Then as N→∞, the expected size of Iν is

E(|Iν |) = (1− τν)N, where τ0 = 0, τν+1 = e−(1−τν).

The above theorem (Theorem 1) suggests that the number of ν-th iterate image points
decreases, i.e., there is H0-entropy loss as H0 is the codomain size. Hong et al. used this
idea to find collisions in the state of the MICKEY stream cipher [HK05]. Moreover, based
on their experiments, Hong et al. proposed the following conjecture: As ν goes to infinity,
(1− τν) goes to 21−log2(ν). This conjecture was proven to be true for ν ≤ 2 κ

2 by Bao et
al. [BGW18]. To conclude, in the ACPKM construction with key size κ, the H0 entropy of
the key-space after ν iterations is approximately κ + 1− log2(ν) where ν ≤ 2 κ

2 .
The above analysis holds for any key and block size. However, as is evident in the case

of GOST, it may be that k > n. Suppose that the size of the key, κ is rn where n is the
size of the block cipher. Then the ACPKM method performs the key transformation as

Kj = EKj−1(D1)||EKj−1(D2)|| . . . ||EKj−1(Dr).

These D1, D2, . . . , Dr are pairwise different constants. Then a key is valid only if all the
parts are different. So there are at most 2n(2n − 1) . . . (2n − r + 1) = (2n)r valid keys in
each section from the second section onward. In this case, the entropy of the key-space
in the s-th section reduces more than in the previous case. From the Theorem 1 we can
obtain the entropy in the s-th section is reduced to (2n)r21−log2(s).

4 Attack Based on Entropy Loss
Next we look at how we can use the reduction in entropy to improve exhaustive search
of later section keys. Since the entropy drops with each iteration, we need to try about
2κ+1−log2 ν keys for the ν-th section. For example, consider the following scenario with a
key size of κ = 128 bits, a block size of n = 128 bits and a section size of 1024 bits (i.e., 8
blocks of 128 bits). To find the key for the 264-th section, we need to try, as Theorem 1
suggests, about 265 keys.

While there are indeed only 265 possible keys, we do not get a simple list of them. For
example, if we choose an arbitrary key, it is, with high probability, not a valid key for this
section. Thus, to make use of the entropy loss of the function we need an efficient way to
enumerate all the valid keys for the ν-th section.

The first way to enumerate all ν-th section keys is by using a naive precomputation
approach: Take all possible 2κ keys and update them ν − 1 times. Store the resulting

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 47

values sorted by their frequency in a dictionary Dν . Once the sorted dictionary Dν is
prepared, we can use it to find keys for the ν-th section. This approach takes ν2κ time
and requires about 2κ+1−log2 νκ memory.

The second approach is an immediate optimization of the naive approach. We can use
O(E(|I1|)κ) memory to reduce the time complexity of the preprocessing to

∑ν−1
i=0 E(|Ii|)

updates.2 To do so we use the set of keys that were valid keys for the (i− 1)-th section to
compute the keys that are valid for the i-th section. Naturally, when i = 0 we use the full
key space.

In both cases we need to build a dictionary Dν of keys which are valid for the ν-th
section only once. This means that we can amortize the cost of its construction cost
over many applications of the brute-force phase (like in Hellman’s time memory trade-off
attacks [Hel80]). To conclude, given Dν , containing all valid keys for the ν-th section (and
their frequency), one can find the keys of the ν-th section by an exhaustive search. Next
we look at an improved exhaustive search algorithm to find the ν-th section key.

4.1 Improved Exhaustive Search
We now discuss improving the exhaustive search for the ν-th section keys. The main idea
is that all keys in the functional graph of f , which have ν predecessors, are valid section
keys (even if they are in a cycle). Thus by exploring the functional graph of f , we can find
a large number of valid section keys for the ν-th section.

Using the above fact, we present Algorithm 1 to find valid section keys for the ν-th
section. Algorithm 1 takes a random key K as an input and outputs a list L of candidate
keys that are valid for the ν-th section. As long as we do not detect a cycle, we update
the key K using ACPKM. We note that detecting a cycle is easy, as we maintain a list L
of keys we encountered in the traversal of the graph. After ν calls to update, we start
recording the keys we encounter. Once we identify a recorded key, we know we are in a
cycle and stop. We note that even if we entered the cycle before we start recording keys –
there is nothing wrong, as we need to enumerate the entire cycle to find all the candidate
ν-section keys (as each value in the cycle has ν predecessors for sure). One can slightly
optimize our algorithm by detecting if we entered a cycle before we start recording the
keys (and then traverse the cycle once more to record it). Note that if it updates the key
ν times without detecting a cycle, all subsequent updates produce valid section keys for
the ν-th section which are stored in L.

If the size of the key is κ, we can expect, by the birthday paradox, to get a cycle after
2κ/2 updates. Once we get a list L, we can choose another key outside of this list and start
the algorithm again.

4.2 The H1-Entropy of the ACPKM Transformation
Previously we discussed the H0-entropy loss which is based on the cardinality of the section
keys. We now focus on the H1-entropy or the Shannon entropy of the section keys. For
any key K we define the following set

P ν
K = {k ∈ {0, 1}κ : fν(k) = K},

where f is the ACPKM transformation. As we can see, P ν
K is the set of master-keys that

after ν sections can reach the section key K. Let Prν(K) be the probability that a key K is
a valid key for the ν-th section. We can define this probability as:

Prν(K) = |P
ν
K |

2κ
.

2The approximate value of
∑ν−1

i=0 E(|Ii|) can be computed as
∑ν−1

i=0 E(|Ii|) = 2κ +
∑ν−1

i=1 E(|Ii|) =
2κ +

∑ν−1
i=1 2κ+1/i ≈ 2κ+1(1 + log(ν − 1)).

48 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

Algorithm 1 Algorithm to find section keys for the ν-th section
Require: A key K
Ensure: A list L of keys

1: L = ∅;
2: if ν == 0 then
3: L = L ∪ {K};
4: return L;
5: Counter = 0;
6: while True do
7: K = ACPKM(K);
8: if K ∈ L then ▷ Cycle Detected
9: return L;

10: Counter = Counter + 1;
11: if Counter ≥ ν then
12: L = L ∪ {K};

Table 1: H0 and H1-entropy for 32-bit truncated AES-128 (key size is 32 bits).
AES: Key Size = 32, Block Size = 32

Section H0 H1 log2(κ)− H0 log2(κ)− H1 H1 − H0

1 31.338262 31.172745 0.661738 0.827255 -0.165517
2 30.906223 30.654303 1.093777 1.345697 -0.251920
4 30.319969 29.974669 1.680031 2.025331 -0.345300
8 29.596806 29.167126 2.403194 2.832874 -0.429680
16 28.769438 28.274307 3.230562 3.725693 -0.495131
32 27.871677 27.331245 4.128323 4.668755 -0.540432
64 26.930389 26.361420 5.069611 5.638580 -0.568969
128 25.963864 25.377889 6.036136 6.622111 -0.585975
256 24.982210 24.386729 7.017790 7.613271 -0.595481

Based on this definition, we can compute the Shannon entropy for the valid keys of the
ν-th section as

H1(Iν) =
∑
K∈Iν

Prν(K) log
(

1
Prν(K)

)
The loss of H1-entropy suggests that the distribution of the master-keys is not uniform

across the valid section keys. We ran an experiment to study the H1-entropy loss for
truncated versions of AES-128 [DR02] and Simon [BSS+15]. The details of these ciphers
are given in Appendix A. The results of the experiments are given in Table 1 and Table 2.
We can observe that the entropy loss for the H1-entropy is higher than H0-entropy.

4.3 Attack Motivated by H1-entropy Loss
We now propose a section key recovery attack motivated by the H1-entropy loss. The
loss of the H1-entropy on key update suggests one crucial issue: the master keys are not
uniformly distributed over the section keys. This fact suggests that not only one can cover
many master keys by a ν-th section key, but also that there are section keys which cover
more master keys (and thus have a greater probability of being correct, compared to other
keys which may be valid ν-th section keys). We can thus look for the keys for which |P ν

K | is
larger, or enjoy the fact that by applying the ACPKM transform many times, they appear
with a larger probability. Such keys are of interest, as testing them costs only a single trial

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 49

Table 2: H0 and H1-entropy for 16-bit truncated Simon (key size is 32 bits).
Section H0 H1 log2(κ)− H0 log2(κ)− H1 H1 − H0

1 31.338258 31.172739 0.661742 0.827261 -0.165519
2 30.906216 30.654282 1.093784 1.345718 -0.251934
4 30.319954 29.974645 1.680046 2.025355 -0.345309
8 29.596808 29.167133 2.403192 2.832867 -0.429675
16 28.769431 28.274346 3.230569 3.725654 -0.495085
32 27.871809 27.331440 4.128191 4.668560 -0.540369
64 26.930347 26.360492 5.069653 5.639508 -0.569855
128 25.962123 25.375141 6.037877 6.624859 -0.586982
256 24.978940 24.382827 7.021060 7.617173 -0.596113

encryption, yet offers better success rate for the attack.
We designed Algorithm 2 based on this idea. We start with a random key, test it for

the ν-th section. If the trial encryption succeeded, we are done. Otherwise, we apply the
ACPKM transform repeatedly (like in Algorithm 1), and each time test the new computed
value. Once a cycle is detected, we abort the experiment and pick a new random master
key to start the process from. We continue to do so until either the correct ν-th section
key is recovered, or if some number of experiments is reached.

Algorithm 2 Algorithm to find the ν-th section master key
1: for cnt = 1 to thresholdκ,ν do
2: Pick a key K at random.
3: Set cycledetected← 0
4: while cycledetected == 0 do
5: Test the key K using trial encryption
6: if The key K is the ν-th section key then
7: Output K and terminate
8: Compute K = ACPKM(K)
9: if Cycle Detected then

10: Set cycledetected← 1
11: Declare “Failure”

First, we note that this could be viewed as the application of Algorithm 1 to various
random keys, and testing the keys suggested by Algorithm 1. One could avoid testing the
same key twice by storing a large bitmap of 2κ bits suggesting which keys were already
covered before. In this case, one could also pick the next key by taking one of the keys
that were not encountered during the attack.

Second, we note that unless such a large table is stored, one could simply run Algorithm 2
until all keys were covered. However, we note that the first iteration of the loop is expected
to cover only keys that were not encountered before, whereas starting from the second
iteration, we expect some of the found keys to be already explored (this follows the fact
that the functional graph of the ACPKM, if modeled as a random graph, is expected to
have one large component with a large cycle of length 2κ/2). Hence, it is easy to see that
each new iteration of Algorithm 2 offers diminishing returns.

At some point the cost of covering the list of proposed keys (which can be done in
a memory-less fashion using any of the memory-less cycle finding algorithms), would be
greater than the number of new keys offered by the new iteration. While we tried to find
an exact formula to estimate the actual point in which the gain is negative (or close to
zero), we could not. Hence, we suggest to perform tests or trails to determine the point,

50 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

Table 3: Results on Algorithm 2 (κ = 32, ν = 256).
Iteration Avg. recovered key Avg. computation Effectiveness Total recovered key

1 224.40 216.42 27.98 224.40

2 223.71 216.46 27.34 225.09

3 223.12 216.38 26.74 225.42

4 222.64 216.46 26.18 225.61

8 221.98 216.53 25.44 225.99

16 221.19 216.38 24.80 226.50

32 220.78 216.53 24.24 226.99

64 220.35 216.41 23.93 227.49

128 219.76 216.38 23.37 227.89

256 219.44 216.51 22.93 228.33

512 216.69 216.33 20.35 228.82

Table 4: Experimental verification of running Algorithm 2 with a single iteration (κ = 32).
Section(ν) Avg. recovered key Avg. computation Effectiveness

16 220.49 216.49 23.99

32 221.49 216.46 25.03

64 222.51 216.53 25.97

128 223.39 216.41 26.99

256 224.37 216.39 27.99

512 225.40 216.42 28.99

thresholdκ,ν that for a κ-bit key in the ν-th section, the gain of this is approach (over a
random guess) is positive.

We ran experiments to verify our attack on the 32-bit truncated version of AES-
128 [DR02]. Table 3 gives for each iteration of Algorithm 2 what is the computational
effort to do the iteration, how many new keys were encountered, what is the effectiveness
(average number of recovered master key per computation of the ACPKM transformation),
as well as on how many keys were covered so far. We note that these experiments were
done for the case of κ = 32, ν = 256. We performed 100 experiments and report the
average of the results. As can be seen in Table 3, for κ = 32, ν = 256, the gain becomes
very close to 1 after 512 iterations. The results of one iteration in Algorithm 2 for various
section numbers is given in Table 4.

We conclude this section with a discussion on the success probability of the attack.
The size of the set of recovered master keys is

∑
K∈Kν |P ν

K | and consequently, the success
probability of the attack is

∑
K∈Kν |P ν

K |/2κ. To give a lower bound on the success probability
we need to bound the size of P ν

K . To find expected number of ν-th preimage, we recall the
following Theorem 2 from [BWGG17].

Theorem 2. Let f be a random function from {0, 1}κ to itself and ν be a positive integer.
Let y be a random image of fν . Then the expected size of the set P ν

y is

E(|P ν
y |) ≥ ν.

Using Theorem 2 we can get the following lower bound

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 51

E(| ∪K∈Kν P ν
K |) = E(

∑
K∈Kν

|P ν
K |), since P ν

K ∩ P ν
K′ = ∅ for K ̸= K′

=
∑

K∈Kν

E(|P ν
K |)

≥
∑

K∈Kν

ν = |Kν |ν.

As an example, consider the case that we choose the threshold to be 1, namely,
Algorithm 2 performs only one iteration of the attack. One can see that of a section ν in
the range 2κ/4 ≤ ν < 2κ/2, we expect to cover 23κ/4 master-keys (this was also supported
by our experiments, suggested in Table 3 and Table 4). In other words, the first iteration
of Algorithm 2 alone, suggests an attack whose time complexity is about 2κ/2 and its
success rate is 2−κ/4.

5 ACPKM is not Misuse Resistant
While the previous attacks are inherent to the ACPKM mode (as well as the CPKM mode),
these modes can also be wrongly instantiated in a way which further hinders the security.
This increases the burden on the implementer, as a wrong implementation may have
significant issues leading to a complete lack of security. As we show later, if the block size
is not a multiple of 8 bits (as may happen in the case of Format Preserving Encryption),
the use of the constants proposed in the RFC or the ISO standard may cause an immediate
trivial attack on the scheme. Furthermore, when the underlining block cipher has a high
probability differential or related-key differential (either as a design error or as a backdoor),
the entropy of the new section keys significantly drops, and one should expect the previous
attacks to aggravate. These issues suggest that ACPKM may be less suitable for deployment
than other modes.

5.1 Special Block Sizes
Both ISO 10116 and RFC 8645 offer a concrete suggestion for the constants Di, which
are required to update the key in ACPKM. The constants should be pairwise different
for any block size n and key size k and the most significant bit of every byte should be
1. The latter condition is important to prevent the trivial collision in the inputs to the
block cipher in the cases of message processing and key updating: if somehow this collision
occurs in some section, one can recover the next section key and consequently all the
onward section keys. Specifically, consider the case with key size and block size of n.3 If
the input to the sκ + α-th block (i.e., IV∥(sκ + α)) is equal with the constant D, then

Ek(IV∥(sκ + α)) = M [sκ + α]⊕ C[sκ + α]

is the next section key. This vulnerability can be prevented by choosing D such that the
counter update can never be D.

We now turn our attention to the case where the block size is not a multiple of 8 (e.g.,
in format-preserving encryption scheme). Suppose that the block size is n = 66 and the
initial counter is IV∥033. If the adversary can set the IV then he can set the IV to the first
33 bits of D. For example, let us consider the example of D given in RFC 8645 [Smy19].
The 33-rd to 65-th bits of D are 00001001 . . . 0111. We can see that the 33-rd bit is not 1,

3When the key size is larger than n, the following reveals n-bit of information about the next section
key.

52 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

so it is possible to reach this D within a valid number of sections. For the constant given
in RFC 8645, this requires 303438365 ≈ 228 blocks to be encrypted (i.e., updates in the
counter) which is less than 232. According to RFC 8645 the maximum message size can
be 2c−1 blocks where 32 ≤ c ≤ (3/4)n. So the above attack is practical. Once this key is
recovered (in a known-plaintext attack), all the keys can also be recovered easily.

In other words, ACPKM (as well as CPKM) should not be instantiated with ciphers
whose block sizes are not a multiple of 8 bits, if they are used with the constants suggested
in RFC 8645 and in ISO 10116. Hence, we urge the standardization bodies to explicitly
disallow this combination (though as we later argue, it may be better to remove these
modes from the standards altogether).

5.2 A Related-key Distinguisher on CTR-ACPKM
This section proposes a related-key distinguisher on the CTR-ACPKM mode. The related-
key attack model was independently suggested by Biham [Bih94] and Knudesn [Knu92].
In the common interpretation of the RK model, the adversary may choose any reason-
able relation between the keys, where the exact definition of “reasonable” is left to the
cryptanalyst (see for example the discussion of permissible relations in [BK03]). We now
propose an attack based on the following key relation: let K and K′ be two keys such that
K ′ = ACPKM(K).4

Let us consider two CTR-ACPKM instances with section size s and s′ such that 2s >
s′ > s. To find a related-key distinguisher, we consider two master keys K and K′ for the
CTR-ACPKM with section size s and s′, respectively, such that K′ = ACPKM(K) = K1.
Thus, the master key K′ matches with the first section key of the master key K.

Now we choose a nonce IV and two random message M1, M2 for the two instances such
that the number of blocks in the messages is at least s′ blocks. Suppose that we query
(M1, IV) to the CTR-ACPKM instance with section size s and obtain the ciphertext C1.
Similarly, we query (M2, IV) to the CTR-ACPKM instance with section size s′ and obtain
the ciphertext C2. Now as we query with the same nonce, in this settings, we get the
following relation

EK′(INCs+1
n
2

(IV∥0 n
2)) = EK1(INCs+1

n
2

(IV∥0 n
2)).

This distinguishing property is easily detectable as we have the following relation on the
(s + 1)-th block:

C2[s + 1]⊕M2[s + 1] = EK′(INCs+1
n
2

(IV∥0 n
2)) = EK1(INCs+1

n
2

(IV∥0 n
2)) = C1[s + 1]⊕M1[s + 1]

=⇒ C1[s + 1]⊕ C2[s + 1] = M1[s + 1]⊕M2[s + 1].

5.3 Weak Block Ciphers
A high probability differential (whether it exists in the block cipher by accident or as a
backdoor) is far from a good thing from a security perspective. However, for the case of
ACPKM, the existence of a differential or even a related-key differential is significantly
worse. In some cases such a (related-key) differential may significantly hinder the security
of ACPKM in real life; especially when the constants Di’s are chosen to exploit the (related-
key) differential property. We discuss a few attacks based on (related-key) differential and
linear property of the underlying cipher in the following. The summary of our attacks is
shown in Table 5.

4We note that the ACPKM transform is not invertible, as we suggested before. Most definitions of
“permissible” relations assume that the key relation is invertible (to avoid trivial attacks or a huge entropy
loss). Indeed, we need to consider a non-invertible transform, but to the best of our knowledge the ACPKM
transformation does not allow a trivial key recovery attack (unlike the relations which were “disallowed”)
nor (in most of the cases) offer a huge entropy loss in the key after one application of ACPKM. Of course,
if the block cipher is really weak or the entropy loss is huge, CTR-ACPKM has bigger issues than the
proposed related-key attacks.

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 53

Table 5: Summary of attacks on ACPKM instantiated with a weak block cipher.
Differential Property

Source Issue Complexity(Time) Section

∆X
p−→ ∆Y Section key-recovery 2n/p 5.3.1

∆X1

p1−→ ∆Y1 Section key-recovery 2n/γ, γ = max{p1p2, p2
1, p2

2} 5.3.1
∆X2

p2−→ ∆Y2

Related-key Differential Property
Source Issue Complexity(Time) Section

0 p−−→
∆K

0 Key entropy loss – 5.3.2

Linear Property
Source Issue Complexity(Time) Section

λI
ϵ−→ λO Key entropy loss – 5.3.3

5.3.1 Differential Property

Suppose that the underlying block cipher E has a differential property such that the
plaintext difference ∆X propagates to the ciphertext difference ∆Y with probability p.
Consider the case of k = 2n, i.e., the key size is twice the block size. So if the ACPKM
transformation is

Kj = EKj−1(D1)||EKj−1(D2)

and D1 ⊕D2 = ∆X then with probability p, we get that the next section key is

Kj = Kj,1||Kj,2 = Kj,1||Kj,1 ⊕∆Y .

This property holds for any section key from the second section onwards. Using this
differential, the attacker expects such an output difference by observing O(1/p) sections
and finding the instance for which the differential was satisfied in time O(2n/p). In other
words it is trivial to try in all sections (starting from 2nd section) the keys (K, K⊕∆Y).
After one such a pair is found the adversary can determine all the future section keys. In
fact, this attack offers gain for any key size κ with κ > n + log2(1/p).

For the case of κ ≥ 4n, we get a better attack. Suppose that the key update is

Kj = EKj−1(D1)||EKj−1(D2)||EKj−1(D3)||EKj−1(D4).

In this case, one can observe difference between any of the
(4

2
)

pairs from {D1, D2, D3, D4}.
Suppose that the underlying block cipher E has a differential property that the plaintext
difference ∆X1 propagates to the ciphertext difference ∆Y1 with probability p1 and the
plaintext difference ∆X2 propagates to the ciphertext difference ∆Y2 with probability
p2. If D1 ⊕ D2 = ∆X1 and D3 ⊕ D4 = ∆X2 then with probability p1p2, the section
key Kj = Kj,1||Kj,2||Kj,3||Kj,4 = Kj,1||Kj,1 ⊕∆Y1 ||Kj,3||Kj,3 ⊕∆Y2 . Furthermore, picking
D1 ⊕D2 = ∆X1 , D3 ⊕D4 = ∆X1 and D1 ⊕D3 = ∆X2 (which implies D2 ⊕D4 = ∆X2 as
well) offers multiple “possibilities” for using the differentials. For example, with probability
p2

1 the resulting updated key is Kj,1||Kj,1 ⊕∆Y1 ||Kj,3||Kj,3 ⊕∆Y1 , and with probability p2
2

it is Kj,1||Kj,2||Kj,1 ⊕∆Y2 ||Kj,2 ⊕∆Y2 . We note that, in RFC 8645 [Smy19] the suggested
values for Di have the following equality: D1 ⊕D2 = D3 ⊕D4, D1 ⊕D3 = D2 ⊕D4 and
D1 ⊕D4 = D2 ⊕D3. Thus, if there is a differential property such that the difference of

54 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

one pair of the constants is equal to the input difference, then other pair also satisfies
that. In that case, with probability p2, the section key is Kj = Kj,1||Kj,2||Kj,3||Kj,4 =
Kj,1||Kj,1 ⊕∆Y||Kj,3||Kj,3 ⊕∆Y. To reduce the chances of misuse, we suggest that the
constants D′

is should not have such relations.
A differential weakness of the underlying cipher can also be used differently. An

adversary can choose a suitable nonce such that for some block, the counter becomes
D1 ⊕ ∆X. Suppose this counter occurs in the ν-th section, i.e., the νs + α-th input
to the block cipher is D1 ⊕ ∆X for some α ∈ [1, s]. Then the (ν + 1)-th section key
is ∆Y ⊕ (M[νs + α] ⊕ C[νs + α]) with probability p. If one guesses this key with high
probability, all the onward keys are known.

5.3.2 Related-key Differential Property

In addition to the above issues with regular differential, related-key differential may offer
another attack strategy. Assume that the input difference 0 leads to an output difference
0 under some input key difference ∆K with probability p. In this case, let us consider
two different keys K and K ′ with K ⊕ K ′ = ∆K . Observe that during updates, the
ACPKM transformation uses the same constant input to the underlying block cipher, i.e.,
the input difference is 0. So both the updates produce the same keys for the next round
with probability p. This definitely reduces the entropy of the keys for the next round.

We have experimented with our-made variants of SIMON [BSS+15] and of TEA [WN94]
block ciphers, where we have taken both block size of 16 bits and key size of 32 bits (see
Appendix A for details of these ciphers). For a random function the key entropy drops by
about 0.66 bits in the first update. However, due to the related-key differential properties
of TEA,5 we observe a drop of almost 2.34 bits in the key entropy already in the first
update. For SIMON, we observed a drop of 0.67 bits in the H0-entropy after the first
update.

5.3.3 Linear Property

High probability linear characteristics also effectively reduces the key entropy. Consider
the key-update of ACPKM

Kj = EKj−1(D1)||EKj−1(D2).

Suppose that there are linear characteristics (λI → λO) with bias ϵ, i.e., we have

λI ·D1 ⊕ λO · EKj−1(D1) = λK · Kj−1 (1)
λI ·D2 ⊕ λO · EKj−1(D2) = λK · Kj−1 (2)

where λK is the key mask and both equations holds with probability ϵ + 1
2 . Using the

pilling-up lemma:

λI · (D1 ⊕D2)⊕ λO · (EKj−1(D1)⊕ ·EKj−1(D2)) = 0

holds with probability 2ϵ2 + 1
2 . Here (D1 ⊕D2) is known to the adversary, so information

about the j-th section key is revealed. Moreover , the existence of such a relation reduces
the key entropy.

5We remind the reader that TEA has 3 related key differential properties of the form 0 1−−−→
∆K

0 These

related-key properties are discussed in Appendix A.2.

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 55

6 ACPKM in the Multi-User Setting
We now discuss the multi-user security of the ACPKM contstruction, taking into consid-
eration the H0-entropy loss. One of the most critical implications of the H0-entropy loss
is that the probability of a collision between two or more user keys increases. We take
u to be the number of users and we let ν ≤ 2 κ

2 be the section number, then, due to the
H0-entropy loss and by the birthday paradox, we can observe that if

u > 2
κ+1−log2(ν)

2 =
√

2κ+1

ν
,

then, with high probability, two or more user keys collide after ν iterations of ACPKM.
This vulnerability in the ACPKM construction highlights the impact of the entropy loss in
real life. For example, if two different user keys collide in section ν, then all the section
keys of those two users after the ν-th section are the same. Thus, if two or more user
keys collide in some section ν, then the counter mode in CTR-ACPKM provides the same
keystream for all the subsequent sections, provided that the users use the same IV.

6.1 Distinguishing Attack Using Key Collision
We propose a distinguishing attack on CTR-ACPKM, using the above key collision. Assume
that there are u users, where the adversary makes a single query to each user asking for
the encryptions of wi sections, with i ∈ {1, 2, ..., u}. We denote the set of all encryptions
by w = min{w1, ..., wu}. In this setting, we construct a deterministic distinguisher D for
a distinguishing game to distinguish CTR-ACPKM construction from the ideal world as
follows:
Attack Algorithm. First, the adversary picks a random nonce, say IV and messages
Mi for the i-th user with ∥Mi∥n = 2sw for all i ∈ {1, 2, ..., u}. So each Mi has w sections
numbered 0, ..., w − 1. Recall that s is the length of each section in n-bit blocks and κ is
the key size. Then the adversary advances as follows:

1. Choose a suitable section ν with ν ≤ 2 κ
2 and u2ν ≥ 2κ+2.

2. For i = 1, ..., u, asks for the encryption of (i, IV, Mi) form the i-th user under key Ki

and obtained Ci.

3. If there are i and j such that Ci[βs + α] + Mi[βs + α] = Cj [βs + α] + Mj [βs + α] for
all β ∈ [ν, w − 1] and α ∈ [1, s] then output 1, else output 0.

The distinguishing advantage of D is more than 1/2 when the number of users is at least
2κ/2+1/

√
ν and D makes at least one query through each users. The detailed analysis of

the algorithm is given in Appendix B.
We now look at the practical security implications of the key collision between multiple

users. Consider a system with a key size of κ = 128 bits, a block size of n = 128 bits, and a
section size of s = 23 blocks. Now consider a message M consisting of 2m blocks. From this
we can see that the maximum number of sections is 2m−3. Note that due to Theorem 1
we cannot ask for more than ν ≤ 264 sections per user. However, since we are in the
multi-user setting we can still generate a collision. As we have seen before we can generate
a key collision at the ν-th section using u users where

u > 2
128+1−log2(ν)

2 = 2
129−log2(ν)

2

with ν ≤ min{264, 2m−3}. Thus, in this example we need 232 users to get a collision in the
264-th section key.

Naturally we can increase the number of users to reduce the number of sections each
user needs to encrypt. If in the above example we use 236 users, the attacker only needs to
request for 256 sections to generate a collision in the section key.

56 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

6.2 Multi-user Key Recovery Attack
Next we discuss a section-key recovery attack in the multi-user setting. We use a similar idea
to the H0-entropy loss and birthday paradox as we discussed in the previous distinguishing
attack. This idea is motivated by [Bih96]. Again, we consider a case with u users. We
construct an adversary that makes a single query to each user. Let wi be the number of
sections in the i-th user query for all i ∈ {1, 2, ..., u} and w = min{w1, ..., wu}. We show
that the adversary can recover the section key of a targeted section for at least one user.
We present the result in the following Lemma 1.

Lemma 1. Let ν ∈ [1, w] be a fixed section number and s be the section size in the n-bit
blocks. There exists an adversary A that makes a single query corresponding to each of the
u users, can recover the ν-th section key of at least one user on the CTR-ACPKM in the
multi-user setting. The success probability of the attack is more than 1/2 when the number
of users is at least 2κ+1/νℓ and A makes at least one query through each users, where κ is
the key size and each query is with at least νs blocks.

Proof. We construct a deterministic adversary A. Let us consider there are u users and A
makes queries to the i-th user of the form (i, IVi, Mi).
Attack Algorithm. A randomly chooses a nonce IV and chooses message Mi for the
i-th user for all i ∈ {1, 2, ..., u}. In that case, the adversary does the following:

1. Choose a suitable section ν with ν ≤ 2 κ
2 .

2. For i = 1, ..., u, queries encryption of (i, IV, Mi) for i-th user under key Ki and
obtained Ci.

3. Compute the following set {X1, ..., Xs}, where Xj = INCsκ+j
n
2

(IV∥0 n
2) for j ∈ [1, s].

4. Guess a set of ℓ keys {Kg
1, Kg

2, ..., Kg
ℓ} which are valid for the ν-th section (to find

valid keys, one can use Algorithm 1 as described in Section 4.1).

5. For all j ∈ [1, κ], encrypt Xj with each guessed key and obtain Yp,j = EKg
p
(Xj) for

all p ∈ {1, 2, ..., ℓ}.

6. If there exists i and p such that

Ci[νs + j]⊕Mi[νs + j] = Yp,j∀j = 1, 2, ..., s

then output Kg
p as the i-th user key.

Analysis of the attack. The condition in step 6 holds if one user’s ν-th section-key
matches with one of the guessed key. We consider the indicator random variables

Ri,p =
{

1, if Kg
p = Ki

ν

0, otherwise

and R =
∑

i,p Pr[Rj,k]. From Theorem 1 we can get the H0-entropy of the ν-th section key
is H = 2κ+1−log2(ν). Thus we have Pr[Ri,p = 1] = 1

2H . From the pairwise independence of
the variables Rj,k and using Chebyshev’s inequality, we have

Pr[R ≥ 1] ≥
(

1− ℓu

2H

)
≥

(
1− ℓuν

2κ+1

)
.

Finally, as we have the condition uνℓ ≥ 2κ+2 from the statement of the lemma,

Pr[R ≥ 1] ≥ 1
2 .

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 57

Table 6: These tables are showing the relation between the number of user and number of
offline block cipher calls required to get a key-recovery advantage near 1

2 . We consider a
key size of κ = 128 bits, a block size of n = 128 bits and section size s = 1024.

(a) log2(ν) = 64

log2(u) log2(ℓ)
20 45
25 40
30 35
35 30
40 25
45 20
50 15

(b) log2(ν) = 48

log2(u) log2(ℓ)
20 61
25 56
30 51
35 46
40 41
45 36
50 31

(c) log2(ν) = 32

log2(u) log2(ℓ)
20 77
25 72
30 67
35 62
40 57
45 52
50 47

Again, random collision can occurs that satisfies the condition on the step 6 of the attack
without being the key match. Such cases are false positive cases and the attack fails in
such cases. Let us consider the following indicator random variables

Si,p =
{

1, if step 6 holds
0, otherwise

and S =
∑

i,p Pr[Sj,k]. Thus we get the expected number of false positive cases

E(S|R = 0) =
∑
i,p

Pr[Sj,k = 1|R = 0] = ℓu

((2n)s) ≤
ℓu

2κ+d
, (3)

for some sufficiently large d such that s =
⌈

κ+d
n−1

⌉
. Thus, for sufficiently large d, the

expected number of false positive cases are small enough.
Again, if one section key is known to the adversary, all the onward section keys are

revealed.
We can observe that the total complexity of the above attack critically depends on the

adversary’s target section. For a fixed number of users, if the adversary targets a section
towards the end, it needs less computation. In Table 6 we can see the number of primitive
queries (ℓ) and the number of users (u) that are required to get a key-recovery advantage
of ≈ 1

2 in a fixed section (ν).
The same idea can also be implemented in the single-user setting. In that case the

adversary also needs to guess the IV and the required condition is

uνℓ ≥ 2κ+m+2,

where m is the size of the nonce IV.

7 Discussion and Future Work
We have presented attacks based on the entropy reduction of the key-space in the ACPKM
internal re-keying technique. Based on the H0-entropy loss, we proposed an improved
exhaustive search for the section keys. We also discussed a key collision attack, and
a key-recovery attack in the multi-user setting due to the H0-entropy loss. Finally, we
discussed that the H1-entropy loss is much more effective than H0-entropy loss and based
on this, we propose a novel master-key recovery attack.

58 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

In addition to the attacks based on entropy loss, we proposed attacks based on faulty
or backdoored implementations of CTR-ACPKM. Furthermore, we show that a malicious
designer may further harm the mode if a specific related-key differential property exists
in the underlying block cipher. Finally, we propose a related-key distinguisher on the
CTR-ACPKM mode which is independent of the underlying primitive.

One open direction of research is to consider the entropy reduction into the security
proofs of [AAS18]. Note that using ACPKM without any change is acceptable if the key
size is large (to begin with), the number of sections encrypted under one master key is
not too large, and the delicate implementation issues are addressed. However, given our
findings, we suggest that ISO and IETF will reconsider the use of ACPKM. Even if the
use of ACPKM is not discouraged, appropriate warnings about the use cases should be
clearly added to the respective standards.

Finally, we note that ACPKM (and CPKM) is suggested to use together with Russian
standards such as GOST 28147-89 (Magam) and Kuznyechik. The design rationale of
these ciphers was never revealed, and in the case of Kuznyechik multiple works suggested
hidden design rationale [BPU16, Per19]. Given that these modes are extremely sensitive
to differential-based backdoors in the design, we further suggest using these modes only
with block ciphers whose design criteria are completely trustworthy, and security against
differential cryptanalysis can be guaranteed (as much as possible).

References
[AAO+16] Liliya R. Ahmetzyanova, Evgeny K. Alekseev, Igor B. Oshkin, Stanislav V.

Smyshlyaev, and Lolita A. Sonina. On the properties of the CTR encryption
mode of the Magma and Kuznyechik block ciphers with re-keying method
based on cryptopro key meshing. IACR Cryptol. ePrint Arch., page 628, 2016.

[AAOS17] Liliya R. Ahmetzyanova, Evgeny K. Alekseev, Igor B. Oshkin, and Stanislav V.
Smyshlyaev. Increasing the lifetime of symmetric keys for the GCM mode by
internal re-keying. IACR Cryptol. ePrint Arch., page 697, 2017.

[AAS18] Liliya R. Akhmetzyanova, Evgeny K. Alekseev, and Stanislav V. Smyshlyaev.
Security bound for CTR-ACPKM internally re-keyed encryption mode. IACR
Cryptol. ePrint Arch., page 950, 2018.

[AASO20] Liliya R. Akhmetzyanova, Evgeny K. Alekseev, Stanislav Smyshlyaev, and
Igor B. Oshkin. On internal re-keying. In SSR, volume 12529 of Lecture Notes
in Computer Science, pages 23–45. Springer, 2020.

[AB00] Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: A compara-
tive analysis of the security of re-keying techniques. In Advances in Cryptology
– Proceedings of ASIACRYPT, volume 1976 of Lecture Notes in Computer
Science, pages 546–559. Springer, 2000.

[ANI+08] Alexandr Afanasiev, Nikolaj Nikishin, Boleslav Izotov, Elena Minaeva, Ser-
guei Murugov, Igor Ustinov, Anatolij Erkin, Grigorij Chudov, and Serguei
Leontiev. GOST 28147-89 Cipher Suites for Transport Layer Security (TLS).
Internet-Draft draft-chudov-cryptopro-cptls-04, Internet Engineering Task
Force, December 2008. Work in Progress.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption
in a multi-user setting: Security proofs and improvements. In Advances in
Cryptology – Proceedings of EUROCRYPT, volume 1807 of Lecture Notes in
Computer Science, pages 259–274. Springer, 2000.

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 59

[BBT16] Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based
prfs: AMAC and its multi-user security. In Advances in Cryptology – Proceed-
ings of EUROCRYPT (1), volume 9665 of Lecture Notes in Computer Science,
pages 566–595. Springer, 2016.

[BGW18] Zhenzhen Bao, Jian Guo, and Lei Wang. Functional graphs and their ap-
plications in generic attacks on iterated hash constructions. IACR Trans.
Symmetric Cryptol., 2018(1):201–253, 2018.

[BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-
SIV: multi-user security, faster key derivation, and better bounds. In Advances
in Cryptology – Proceedings of EUROCRYPT (1), volume 10820 of Lecture
Notes in Computer Science, pages 468–499. Springer, 2018.

[Bih94] Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptol.,
7(4):229–246, 1994.

[Bih96] E. Biham. How to forge DES-encrypted messages in 228 steps. 1996.

[Bih02] Eli Biham. How to decrypt or even substitute des-encrypted messages in 228
steps. Inf. Process. Lett., 84(3):117–124, 2002.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: Rka-prps, rka-prfs, and applications. In EUROCRYPT, volume 2656
of Lecture Notes in Computer Science, pages 491–506. Springer, 2003.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security
of 64-bit block ciphers: Collision attacks on http over tls and OpenVPN.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, page 456–467. Association for Computing
Machinery, 2016.

[BMS05] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-
memory trade-offs with multiple data. In Selected Areas in Cryptography,
volume 3897 of Lecture Notes in Computer Science, pages 110–127. Springer,
2005.

[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-engineering the
s-box of streebog, kuznyechik and stribobr1. In Advances in Cryptology –
Proceedings of EUROCRYPT (1), volume 9665 of Lecture Notes in Computer
Science, pages 372–402. Springer, 2016.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference, DAC ’15,
New York, NY, USA, 2015. Association for Computing Machinery.

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Advances in Cryptology – Proceedings
of CRYPTO (1), volume 9814 of Lecture Notes in Computer Science, pages
247–276. Springer, 2016.

[BWGG17] Zhenzhen Bao, Lei Wang, Jian Guo, and Dawu Gu. Functional graph revisited:
Updates on (second) preimage attacks on hash combiners. In Advances in
Cryptology – Proceedings of CRYPTO (2), volume 10402 of Lecture Notes in
Computer Science, pages 404–427. Springer, 2017.

60 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

[CMS11] Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at
tightness. In Selected Areas in Cryptography, volume 7118 of Lecture Notes in
Computer Science, pages 293–319. Springer, 2011.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In Advances in Cryptology – Proceed-
ings of CRYPTO (2), volume 9815 of Lecture Notes in Computer Science,
pages 272–301. Springer, 2016.

[DL14] Itai Dinur and Gaëtan Leurent. Improved generic attacks against hash-based
MACs and HAIFA. In Advances in Cryptology – Proceedings of CRYPTO (1),
volume 8616 of Lecture Notes in Computer Science, pages 149–168. Springer,
2014.

[DR02] Joan Daemen and Vincent Rijmen. AES and the wide trail design strategy.
In Advances in Cryptology – Proceedings of EUROCRYPT, volume 2332 of
Lecture Notes in Computer Science, pages 108–109. Springer, 2002.

[FO89] Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In
Advances in Cryptology – Proceedings of EUROCRYPT, volume 434 of Lecture
Notes in Computer Science, pages 329–354. Springer, 1989.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009.

[Hel80] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory, 26(4):401–406, 1980.

[HK05] Jin Hong and Woo-Hwan Kim. Tmd-tradeoff and state entropy loss considera-
tions of streamcipher MICKEY. In Progress in Cryptology – INDOCRYPT,
volume 3797 of Lecture Notes in Computer Science, pages 169–182. Springer,
2005.

[HT17] Viet Tung Hoang and Stefano Tessaro. The multi-user security of double
encryption. In Advances in Cryptology – Proceedings of EUROCRYPT (2),
volume 10211 of Lecture Notes in Computer Science, pages 381–411, 2017.

[HTT18] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The
multi-user security of GCM, revisited: Tight bounds for nonce randomization.
In CCS, pages 1429–1440. ACM, 2018.

[ISO] ISO/IEC 10116:2017/Amd 1:2021, Information technology — Security tech-
niques — Modes of operation for an n-bit block cipher, CTR-ACPKM mode
of operation, 2021. Standard, International Organization for Standardization,
Geneva, CH.

[Knu92] Lars R. Knudsen. Cryptanalysis of LOKI91. In AUSCRYPT, volume 718 of
Lecture Notes in Computer Science, pages 196–208. Springer, 1992.

[LC06] Serguei Leontiev and Grigorij Chudov. Using the GOST 28147-89, GOST
R 34.11-94, GOST R 34.10-94, and GOST R 34.10-2001 Algorithms with
Cryptographic Message Syntax (CMS). RFC 4490, May 2006.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing multi-key
security degradation. In Advances in Cryptology – Proceedings of ASIACRYPT
(2), volume 10625 of Lecture Notes in Computer Science, pages 575–605.
Springer, 2017.

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 61

[LPW13] Gaëtan Leurent, Thomas Peyrin, and Lei Wang. New generic attacks against
hash-based MACs. In Advances in Cryptology – Proceedings of ASIACRYPT
(2), volume 8270 of Lecture Notes in Computer Science, pages 1–20. Springer,
2013.

[ML15] Nicky Mouha and Atul Luykx. Multi-key security: The even-mansour con-
struction revisited. In Advances in Cryptology – Proceedings of CRYPTO (1),
volume 9215 of Lecture Notes in Computer Science, pages 209–223. Springer,
2015.

[MPS20] Andrew Morgan, Rafael Pass, and Elaine Shi. On the adaptive security of
MACs and PRFs. In Advances in Cryptology – Proceedings of ASIACRYPT
(1), volume 12491 of Lecture Notes in Computer Science, pages 724–753.
Springer, 2020.

[Per19] Léo Perrin. Partitions in the s-box of streebog and kuznyechik. IACR Trans.
Symmetric Cryptol., 2019(1):302–329, 2019.

[PLK06] Vladimir Popov, Serguei Leontiev, and Igor Kurepkin. Additional Crypto-
graphic Algorithms for Use with GOST 28147-89, GOST R 34.10-94, GOST
R 34.10-2001, and GOST R 34.11-94 Algorithms. RFC 4357, January 2006.

[PvO96] Bart Preneel and Paul C. van Oorschot. On the security of two MAC algorithms.
In Advances in Cryptology – Proceedings of EUROCRYPT, volume 1070 of
Lecture Notes in Computer Science, pages 19–32. Springer, 1996.

[PW20] Thomas Peyrin and Haoyang Wang. The MALICIOUS framework: Embed-
ding backdoors into tweakable block ciphers. In Advances in Cryptology –
Proceedings of CRYPTO (3), volume 12172 of Lecture Notes in Computer
Science, pages 249–278. Springer, 2020.

[Smy19] S. Smyshlyaev. Re-keying mechanisms for symmetric keys. RFC 8645, RFC
Editor, August 2019.

[WN94] David J. Wheeler and Roger M. Needham. Tea, a tiny encryption algorithm.
In FSE, volume 1008 of Lecture Notes in Computer Science, pages 363–366.
Springer, 1994.

A Reduced Versions of the Ciphers Used in the Experiment
To provide experimental supports to our analysis in this paper, we instantiated CTR-ACPKM
with toy versions of Simon [BSS+15], TEA [WN94] and AES [DR02]. We give a detailed
configuration of our-made version the ciphers.

A.1 TEA16
TEA16 is the reduced version of the TEA [WN94] block cipher, reduced to a 16-bit block
cipher with a 32-bit key master key, where the word size is 8 bits. TEA16 is a 32-rounds
balanced Feistel cipher with a 32-bit master key K. TEA16’s key schedule follows that
of TEA [WN94]. At first the 32-bit master key parsed into four keys of size 8 bits as
K[3]||K[2]||K[1]||K[0] 8← K. Then, in the even rounds we use the 16-bit part K[1]||K[0]
and in the odd rounds we use the other 16-bit part K[3]||K[2]. The round function of
TEA16 is applied to the block (Lr, Rr) as follows:{

Rr+1 = Lr + (((Rr ≪4) + K2
r)⊕ (Rr + c)⊕ ((Rr ≫5) + K1

r))
Lr+1 = Rr

62 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

for r = 0 · · · 32 and K1
r∥K2

r is the r-th round key. X ≪i and X ≫i denotes the i bit left
shift and i bit right shift of X, respectively. The value c is initially 0 and incremented by
a fixed constant 0x9E at every two rounds. A schematic diagram of one cycle (two rounds)
is given in Figure 1.

Lr Rr

≪4

≫5

≪4

≫5

Lr+2 Rr+2

c

K[0]

K[1]

c

K[2]

K[3]

1

Figure 1: Round function of the TEA16.

A.2 Related Key Properties of TEA16
Here we recall three related-key differential property of the block cipher TEA16, that holds
for zero input difference. Let us denote one cycle of TEA16 by F . The following iterative
differential characteristics holds with probability 1:

F (X∥Y, K1[3]∥K1[2]∥K1[1]∥K1[0], c)⊕ F (X∥Y, K2[3]∥K2[2]∥K2[1]∥K2[0], c) = 0
where two keys K1[3]∥K1[2]∥K1[1]∥K1[0] and K2[3]∥K2[2]∥K2[1]∥K2[0] hold any of the
following relations:

1. Simultaneously flipping the most significant bit of K1[2] and K1[3], i.e.,
K2[0] = K1[0]
K2[1] = K1[1]
K2[2] = K1[2] + 27

K2[3] = K1[3] + 27

2. Simultaneously flipping the most significant bit of K1[0] and K1[1], i.e.,
K2[0] = K1[0] + 27

K2[1] = K1[1] + 27

K2[2] = K1[2]
K2[3] = K1[3]

3. Simultaneously flipping the most significant bit of K1[0],K1[1],K1[2] and K1[3], i.e.,
K2[0] = K1[0] + 27

K2[1] = K1[1] + 27

K2[2] = K1[2] + 27

K2[3] = K1[3] + 27

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 63

Thus, TEA has 3 related-key differential property that takes zero input difference to zero
output difference under 3 possible key difference.

A.3 Simon16
Simon16 is a reduced version of Simon [BSS+15] with a 16-bit block and 32-bit master
key. It is an Feistel structure where the round function follows ARX construction and
has 32 Feistel rounds. One round of Simon16 applied to the block Lr||Rr and produce
Lr+1||Rr+1 as follows:{

Lr+1 = Rr ⊕ ((S1(Lr) ∧ S2(Lr))⊕ S3(Lr)⊕Kr)
Rr+1 = Rr

where Sj(X) denotes the left circular shift of X by j positions and Ki denotes the round
key. Thus, we have changes the left circular shift amounts to 1,2, and 3 instead of 8, 1
and 2 used in the original Simon [BSS+15]. A schematic diagram of one round is given
in Figure 2.

Lr Rr

S1

S2

S3

K[r]

Lr+1 Rr+1

Figure 2: Round function of the Simon16.

The key schedule of Simon16 follows exactly the same key schedule as used in the
original Simon [BSS+15]. At first the 32-bit master key K is parsed into four keys of size
8 bits to generate subkeys for the first 4 rounds, i.e., K[3]∥K[2]∥K[1]∥K[0] 8← K. The rest
of the 28 keys are generated as follows: for i = 0, ..., 27 we compute

K[i+4] = K[i]+(S−3(K[i+3])⊕K[i+1])⊕S−1((S−3(K[i+3])⊕K[i+1]))⊕Zi⊕0xF3,

where S−j(X) denotes the right circular shift of X by j positions. Here Zi is the i-th bit
of a fixed bit sequence Z = 00011001110000110101001000101111.

We are not aware of any high probability related-key differential in Simon [BSS+15]
and we expect none exist in Simon16.

A.4 AES16/AES32
AES16 (AES32) is the reduced version of AES [DR02] reduced to a 16-bit (32-bit) block
cipher with 32-bit key. We take 32-bit key and plaintext, and add zero to the 12 most
significant bytes to make it 128-bit key. Finally, the output of AES-128 is chopped to 16
bits (32 bits).

B Analysis of the Distinguishing Attack from Subsection 6.1
Assume that there are u users, where the adversary makes a single query to each user.
Let wi be the number of sections in the i-th user-query for all i ∈ {1, 2, ..., u} and

64 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

w = min{w1, ..., wu}. We show that this adversary can distinguish CTR-ACPKM from a
random function. We present our main result of this section in the following Lemma 2.

Lemma 2. Let ν ∈ [1, w] be a fixed section number and s is the section size in n-bit
blocks. There exists an adversary D that makes a single query to each of the u users, can
distinguish CTR-ACPKM construction from a random function in the multi-user setting.
The distinguishing advantage of D is more than 1/2 when the number of users is at least
2κ/2+1/

√
ν and D makes at least one query through each users, where κ is the key size

and each query is with at least νs blocks.

Proof. We construct a deterministic distingusher D on a distinguishing game to distinguish
CTR-ACPKM construction from the ideal world. Let us consider there are u users and D
makes queries to the i-th user of the form (i, IVi, Mi).
Attack Algorithm. First, the adversary picks a random nonce, say IV and messages
Mi for the i-th user with ∥Mi∥n = 2sw for all i ∈ {1, 2, ..., u}. Recall that s is the length of
each section in n-bit blocks. So each Mi has w sections numbered 0, ..., w − 1. Then the
adversary does the following:

1. Choose a suitable section ν with ν ≤ 2 κ
2 and u2ν ≥ 2κ+2.

2. For i = 1, ..., u, asks for the encryption of (i, IV, Mi) form the i-th user under key Ki

and obtained Ci.

3. If there are i and j such that Ci[βs + α] + Mi[βs + α] = Cj [βs + α] + Mj [βs + α] for
all β ∈ [ν, w − 1] and α ∈ [1, s] then output 1, else output 0.

Analysis of the attack. We show that in the above attack D outputs 1 with high prob-
ability while interacting with the CTR-ACPKM construction and with very low probability
in the ideal world. Note that Ci[βs + α] + Mi[βs + α] = Cj [βs + α] + Mj [βs + α] implies
EKi

β
(INCβs+α

n
2

(IV∥0 n
2)) = EKj

β
(INCβs+α

n
2

(IV∥0 n
2)) where K∗

β denotes the β-th section key of
the ∗-th user. Thus, in the real world, if the i-th user key and j-th user key collide at the
ν-th section, then EKi

β
(INCβs+α

n
2

(IV∥0 n
2)) = EKj

β
(INCβs+α

n
2

(IV∥0 n
2)) for all β ∈ [ν, w − 1]

and α ∈ [1, s] and the D outputs 1 at step 3 of the algorithm.
We analyze the attack in two steps. In the first step we show that such key collision

occurs with high probability. To find this collision probability of two users key at the ν-th
section, we recall a result from [DL14] in the following Lemma 3.

Lemma 3 ([DL14]). Let ν ≤ 2 κ
2 be a non-negative integer and f is a random function

from {0, 1}κ to itself. Then, the image of two arbitrary inputs to the ν-th iterate fν collide
with probability about ν

2κ .

In the second step we show that in the ideal world, D outputs 1 at step 3 of the
algorithm with low probability. Thus D can distinguish the CTR-ACPKM construction
from the ideal world.
Step-I: Let us consider the following indicator random variable

Ui,j =
{

1, if Ki
ν = Kj

ν

0, otherwise.

Now from Lemma 3, any two user keys collide at the ν-th section with probability ν
2k

where ν ≤ 2 κ
2 . Thus, Pr[Uj,k = 1] = ν

2κ . Also, let U =
∑

i,j Ui,j and we have to show that

Orr Dunkelman, Shibam Ghosh and Eran Lambooij 65

U ≥ 1 with high probability. As all the Ui,j ’s are pairwise independent random variables,
by using Chebyshev’s inequality we have

Pr[∥U − E(U)∥ ≥ E(U)] ≤ V(U)
E(U)2

⇒Pr[U = 0] ≤ Pr[∥U − E(U)∥ ≥ E(U)] ≤ V(U)
E(U)2

⇒Pr[U ≥ 1] ≥ 1− V(U)
E(U)2 . (4)

We compute the expectation as follows:

E(U) = E
[∑

j,k

Uj,k

]
=

∑
j,k

Pr[Uj,k = 1] =
(

u
2
)
ν

2κ
. (5)

Similarly, from the pairwise independence of the variables Uj,k, we can compute the
variance as follows:∑

j,k

V[Uj,k] =
∑
j,k

E[U2
j,k]− (E[Uj,k])2 =

∑
j,k

ν

2κ
−

(ν

2κ

)2
≤

∑
j,k

ν

2κ
=

(
u
2
)
ν

2κ
. (6)

Thus from Equation 4, we get

Pr[U ≥ 1] ≥
(

1− 2κ(
u
2
)
ν

)
≥

(
1− 2κ+1

u2ν

)
.

Finally, from the statement of the lemma, as D makes at least 2κ/2+1/
√

ν queries, we have
the relation that u2ν ≥ 2κ+2. Thus, we get

Pr[U ≥ 1] ≥ 1
2 .

Step-II: In this step, we bound the probability that D outputs 1 in the step 3 of the above
algorithm while interacting with the ideal world. Note that, D outputs 1 if two user keys
collides. However, the condition Ci[βs + α] + Mi[βs + α] = Cj [βs + α] + Mj [βs + α] can
occur for all β ∈ [ν, w − 1] and α ∈ [1, s] without being a key collision. Such cases are due
to random collisions and can occur in ideal world. Let us consider the indicator random
variable

Zi,j =
{

1, if Ci[βs + α] + Mi[βs + α] = Cj [βs + α] + Mj [βs + α] ∀β ∈ [ν, w − 1], α ∈ [1, s]
0, otherwise

and let Z =
∑

i,j Zj,k. It is easy to observe that a random collision occurs if there exist
i, j such that Zi,j = 1. As the outputs are chosen at uniformly random in the ideal world,
such a random collision occurs with the probability at most 1

((2n)s)w−ν . Thus the expected
number of such cases:

E(Z|U = 0) =
∑
j,k

Pr[Zj,k = 1|U = 0] =
(

u
2
)

((2n)s)w−ν
≤ u2

((2n)s)w−ν
. (7)

To simplify the above inequality, we recall an idea from [HT17]. Let s(w− ν) =
⌈

κ+d
n−1

⌉
for

some suitable choice of d. In that case we have

(2n)s = 2n(2n − 1)...(2n − s + 1) ≥ 2(n−1)s.

66 Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

Thus from the above Equation 7 and using Markov’s inequality we can bound the probability
that D outputs 1 in the ideal world as follows:

Pr[Z ≥ 1] ≤ E(Z|U = 0) ≤ u2

((2n)s)w−ν
≤ u2

2κ+d
.

Thus, for sufficiently large d (consequently, for sufficiently large w − ν), the expected
number of random collisions is small enough.

	Introduction
	Related Work
	The Multi User Security Setting
	Our Contributions
	Organization of the Paper

	Preliminaries
	The CTR-ACPKM Internal Re-keying Mode

	Security Issues with the ACPKM Transformation
	Attack Based on Entropy Loss
	Improved Exhaustive Search
	The H1-Entropy of the ACPKM Transformation
	Attack Motivated by H1-entropy Loss

	ACPKM is not Misuse Resistant
	Special Block Sizes
	A Related-key Distinguisher on CTR-ACPKM
	Weak Block Ciphers

	ACPKM in the Multi-User Setting
	Distinguishing Attack Using Key Collision
	Multi-user Key Recovery Attack

	Discussion and Future Work
	Reduced Versions of the Ciphers Used in the Experiment
	TEA16
	Related Key Properties of TEA16
	Simon16
	AES16/AES32

	Analysis of the Distinguishing Attack from Subsection 6.1

