Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

FSE 2023

Orr Dunkelman <u>Shibam Ghosh</u> Eran Lambooij March 23, 2023

Department of Computer Science, University of Haifa

- 1. Advanced CryptoPro Key Meshing (ACPKM)
- 2. Security Issues with the ACPKM Transformation
- 3. A Related-key Distinguisher on CTR-ACPKM
- 4. ACPKM is not Misuse Resistant
- 5. Conclusion

1. Advanced CryptoPro Key Meshing (ACPKM)

2. Security Issues with the ACPKM Transformation

3. A Related-key Distinguisher on CTR-ACPKM

4. ACPKM is not Misuse Resistant

1. To enhance security, it is common practice to restrict the duration of key use

- 1. To enhance security, it is common practice to restrict the duration of key use
- 2. The encryption key is typically changed after a set amount of encryptions
- 3. Key lifetime: The maximum amount of data that can be encrypted under a key

- 1. To enhance security, it is common practice to restrict the duration of key use
- 2. The encryption key is typically changed after a set amount of encryptions
- 3. Key lifetime: The maximum amount of data that can be encrypted under a key
- 4. Changing a key requires a key-exchange protocol with high computation and communication costs

- 1. To enhance security, it is common practice to restrict the duration of key use
- 2. The encryption key is typically changed after a set amount of encryptions
- 3. Key lifetime: The maximum amount of data that can be encrypted under a key
- 4. Changing a key requires a key-exchange protocol with high computation and communication costs
- 5. Re-keying mechanism: Generating the secret key K_i of the *i*-th epoch based on the previous keys (suggested by Abdalla and Bellare).

- 1. To enhance security, it is common practice to restrict the duration of key use
- 2. The encryption key is typically changed after a set amount of encryptions
- 3. Key lifetime: The maximum amount of data that can be encrypted under a key
- 4. Changing a key requires a key-exchange protocol with high computation and communication costs
- 5. Re-keying mechanism: Generating the secret key K_i of the *i*-th epoch based on the previous keys (suggested by Abdalla and Bellare).
- 6. Types of re-keying mechanisms:
 - The block cipher level (fresh re-keying)
 - The block cipher mode of operation level (internal re-keying)
 - The protocol level (external re-keying)

ACPKM Internal Re-keying

- Basic Idea: Call a key update function after encrypting a predefined number of blocks, known as a section
- ACPKM mode was Proposed in CTCrypt'2016
- Counter mode with ACPKM, CTR-ACPKM is Passing through the last formal standardization process in IETF (CFRG)
- Was standardized by ISO (ISO 10116)

ACPKM Internal Re-keying

- Basic Idea: Call a key update function after encrypting a predefined number of blocks, known as a section
- ACPKM mode was Proposed in CTCrypt'2016
- Counter mode with ACPKM, CTR-ACPKM is Passing through the last formal standardization process in IETF (CFRG)
- Was standardized by ISO (ISO 10116)

ACPKM method generates a new key in the following way:

$$\mathsf{K}_j = \mathsf{MSB}_\kappa(\mathsf{E}_{\mathsf{K}_{j-1}}(D_1)|\cdots|\mathsf{E}_{\mathsf{K}_{j-1}}(D_r))$$

where $r = \kappa/n$ and $D_1, D_2, D_3, ..., D_r$ are carefully chosen constants

ACPKM Internal Re-keying

 $\kappa = 4n$

CTR-ACPKM

Section size is s

CTR-ACPKM

Section size is s

Shibam Ghosh • FSE 2023 — Advanced CryptoPro Key Meshing (ACPKM) • 6/35

1. Advanced CryptoPro Key Meshing (ACPKM)

2. Security Issues with the ACPKM Transformation

3. A Related-key Distinguisher on CTR-ACPKM

4. ACPKM is not Misuse Resistant

- 1. ACPKM as a functional graph: Consider the graph $G_{ACPKM} = (V, E)$, where $V = \{0, 1\}^{\kappa}$ and $E = \{(K, ACPKM(K))\}$
- A vertex K ∈ V is called ν-th iterate image point if ∃x s.t. (ACPKM)^ν(x) = K (denoted by I^ν)

- 1. ACPKM as a functional graph: Consider the graph $G_{ACPKM} = (V, E)$, where $V = \{0, 1\}^{\kappa}$ and $E = \{(K, ACPKM(K))\}$
- A vertex K ∈ V is called ν-th iterate image point if ∃x s.t. (ACPKM)^ν(x) = K (denoted by I^ν)
- 3. Result on functional graph by Flajolet and Odlyzko: The H_0 entropy of the key-space after s iterations is approximately $\kappa + 1 \log_2(s)$ where $s \le 2^{\frac{\kappa}{2}}$

1. Reduced entropy indicates more efficient exhaustive search on later sections

- 1. Reduced entropy indicates more efficient exhaustive search on later sections
- 2. K is a valid key for the $\nu\text{-th}$ section iff $\mathsf{K}\in\mathsf{I}^\nu$

- 1. Reduced entropy indicates more efficient exhaustive search on later sections
- 2. K is a valid key for the $\nu\text{-th}$ section iff $\mathsf{K}\in\mathsf{I}^\nu$

Basic Approach to Find the ν -th Section Keys

A basic approach to find valid section keys for the ν -th section

Basic Approach to Find the ν -th Section Keys

A basic approach to find valid section keys for the ν -th section

Improved Exhaustive Search

- If $K \in I^{\nu}$, then $\exists x$ such that $f^{\nu}(x) = K$.
- Thus, $f(K) = f(f^{\nu}(x)) = f^{\nu}(f(x))$.
- So, f(K) is also a valid ν -th section key.

Improved Exhaustive Search

- If $K \in I^{\nu}$, then $\exists x$ such that $f^{\nu}(x) = K$.
- Thus, $f(K) = f(f^{\nu}(x)) = f^{\nu}(f(x))$.
- So, f(K) is also a valid ν -th section key.

Improved Exhaustive Search

The H₁-Entropy of the ACPKM Transformation

• $P_{K}^{\nu} = \{x \in \{0,1\}^{\kappa} : f^{\nu}(x) = K\}$ is the set of master-keys that, after ν sections, can reach the section key K

The H₁-Entropy of the ACPKM Transformation

- $P_{K}^{\nu} = \{x \in \{0,1\}^{\kappa} : f^{\nu}(x) = K\}$ is the set of master-keys that, after ν sections, can reach the section key K
- The probability that K is a valid *nu*-th key is

$$\mathsf{Pr}_
u(\mathsf{K}) = rac{|\mathcal{P}^
u_\mathsf{K}|}{2^\kappa}$$

The H₁-Entropy of the ACPKM Transformation

- $P_{K}^{\nu} = \{x \in \{0,1\}^{\kappa} : f^{\nu}(x) = K\}$ is the set of master-keys that, after ν sections, can reach the section key K
- The probability that K is a valid *nu*-th key is

$$\mathsf{Pr}_
u(\mathsf{K}) = rac{|P^
u_\mathsf{K}|}{2^\kappa}$$

• Thus H₁-Entropy or Shannon entropy is

$$\mathsf{H}_1(\mathsf{I}^\nu) = \sum_{\mathsf{K} \in \mathsf{I}^\nu} \mathsf{Pr}_\nu(\mathsf{K}) \log\left(\frac{1}{\mathsf{Pr}_\nu(\mathsf{K})}\right)$$

AES: Key Size = 32, Block Size = 16						
steps	H ₀	H_1	$\log_2(\kappa) - H_0$	$\log_2(\kappa) - H_1$	$H_1 - H_0$	
0	31.338262	31.172745	0.661738	0.827255	-0.165517	
1	30.906223	30.654303	1.093777	1.345697	-0.251920	
2	30.581405	30.274630	1.418595	1.725370	-0.306775	
3	30.319969	29.974669	1.680031	2.025331	-0.345300	
4	30.100699	29.726603	1.899301	2.273397	-0.374096	
5	29.911633	29.515048	2.088367	2.484952	-0.396585	
6	29.745322	29.330610	2.254678	2.669390	-0.414712	
7	29.596806	29.167126	2.403194	2.832874	-0.429680	

Simon: Key Size = 32, Block Size = 16					
steps	H ₀	H_1	$\log_2(\kappa) - H_0$	$\log_2(\kappa) - H_1$	$H_1 - H_0$
0	31.338258	31.172739	0.661742	0.827261	-0.165519
1	30.906216	30.654282	1.093784	1.345718	-0.251934
2	30.581411	30.274611	1.418589	1.725389	-0.306800
3	30.319954	29.974645	1.680046	2.025355	-0.345309
4	30.100679	29.726576	1.899321	2.273424	-0.374103
5	29.911625	29.515037	2.088375	2.484963	-0.396588
6	29.745328	29.330618	2.254672	2.669382	-0.414710
7	29.596808	29.167133	2.403192	2.832867	-0.429675

• Loss of H₁-entropy indicates non-uniform distribution of master-keys among valid section keys

- Loss of H₁-entropy indicates non-uniform distribution of master-keys among valid section keys
- Some section keys cover more master keys than others
- Keys that cover more master keys have a higher probability of being correct $\nu\text{-th}$ section keys

- Loss of H₁-entropy indicates non-uniform distribution of master-keys among valid section keys
- Some section keys cover more master keys than others
- Keys that cover more master keys have a higher probability of being correct $\nu\text{-th}$ section keys
- We can look for these keys by checking for larger $|P_{\rm K}^{\nu}|$

Attack Motivated by H_1 -entropy Loss

Shibam Ghosh • FSE 2023 — Security Issues with the ACPKM Transformation • 17/35

Attack Motivated by H_1 -entropy Loss

Shibam Ghosh • FSE 2023 — Security Issues with the ACPKM Transformation • 18/35

Iteration	Avg. covered key	Avg. computation	Effectiveness	Total covered key
1	2 ^{24.40}	2 ^{16.42}	2 ^{7.98}	2 ^{24.40}
2	$2^{23.71}$	2 ^{16.46}	2 ^{7.34}	$2^{25.09}$
3	$2^{23.12}$	2 ^{16.38}	2 ^{6.74}	2 ^{25.42}
4	2 ^{22.64}	2 ^{16.46}	2 ^{6.18}	$2^{25.61}$
8	$2^{21.98}$	2 ^{16.53}	2 ^{5.44}	2 ^{25.99}
16	$2^{21.19}$	2 ^{16.38}	2 ^{4.80}	$2^{26.50}$
32	2 ^{20.78}	2 ^{16.53}	2 ^{4.24}	2 ^{26.99}
64	2 ^{20.35}	$2^{16.41}$	2 ^{3.93}	2 ^{27.49}
128	2 ^{19.76}	2 ^{16.38}	2 ^{3.37}	2 ^{27.89}
256	2 ^{19.44}	2 ^{16.51}	2 ^{2.93}	2 ^{28.33}
512	2 ^{16.69}	2 ^{16.33}	2 ^{0.35}	2 ^{28.82}

- We prove that $E(|\cup_{\mathsf{K}\in\mathcal{K}^{\nu}}P^{\nu}_{\mathsf{K}}|)\geq |\mathcal{K}^{\nu}|\nu$
- A section ν in the range $2^{\kappa/4} \leq \nu < 2^{\kappa/2}$ is expected to cover $2^{3\kappa/4}$ master-keys.
- Thus one iteration suggests an attack with time complexity $2^{\kappa/2}$ and success rate $2^{-\kappa/4}$.

$Section(\nu)$	Avg. covered key	Avg. computation	Effectiveness
16	2 ^{20.49}	2 ^{16.49}	2 ^{3.99}
32	2 ^{21.49}	$2^{16.46}$	2 ^{5.03}
64	$2^{22.51}$	$2^{16.53}$	2 ^{5.97}
128	2 ^{23.39}	$2^{16.41}$	2 ^{6.99}
256	2 ^{24.37}	2 ^{16.39}	2 ^{7.99}
512	2 ^{25.40}	2 ^{16.42}	2 ^{8.99}

1. Advanced CryptoPro Key Meshing (ACPKM)

2. Security Issues with the ACPKM Transformation

3. A Related-key Distinguisher on CTR-ACPKM

4. ACPKM is not Misuse Resistant

- Consider a CTR-ACPKM instance with section size *s*
- Suppose the master-key is K

- Consider a CTR-ACPKM instance with section size *s*
- Suppose the master-key is K

- Consider another CTR-ACPKM instance with section size s'
- Choose the master-key K' = ACPKM(K)

- Consider a CTR-ACPKM instance with section size *s*
- Suppose the master-key is K

- Consider another CTR-ACPKM instance with section size s'
- Choose the master-key $\mathsf{K}' = \mathsf{ACPKM}(\mathsf{K})$
- 2s > s' > s

- Consider a CTR-ACPKM instance with section size *s*
- Suppose the master-key is K
- Choose message-nonce pair (IV, M_1)
- Let CTR-ACPKM(IV, M_1) = C_1

- Consider a CTR-ACPKM instance with section size *s*
- Suppose the master-key is K
- Choose message-nonce pair (IV, M_1)
- Let CTR-ACPKM(IV, M_1) = C_1

- Consider another CTR-ACPKM instance with section size *s*'
- Choose the master-key $K' = \mathsf{ACPKM}(\mathsf{K})$
- 2s > s' > s
- Choose message-nonce pair (IV, M_2)
- Let CTR-ACPKM(IV, M_2) = C_2

- Consider a CTR-ACPKM instance with section size *s*
- Suppose the master-key is K
- Choose message-nonce pair (IV, M_1)
- Let CTR-ACPKM(IV, M_1) = C_1

- Consider another CTR-ACPKM instance with section size *s*'
- Choose the master-key $K' = \mathsf{ACPKM}(\mathsf{K})$
- 2s > s' > s
- Choose message-nonce pair (IV, M_2)
- Let CTR-ACPKM(IV, M_2) = C_2

 $E_{\mathsf{K}'}(\mathsf{INC}^{\mathfrak{s}}_{\frac{n}{2}}(\mathsf{IV}\|0^{\frac{n}{2}})) = E_{\mathsf{K}_{1}}(\mathsf{INC}^{\mathfrak{s}}_{\frac{n}{2}}(\mathsf{IV}\|0^{\frac{n}{2}})) \implies C_{1}[\mathfrak{s}] \oplus C_{2}[\mathfrak{s}] = M_{1}[\mathfrak{s}] \oplus M_{2}[\mathfrak{s}]$

1. Advanced CryptoPro Key Meshing (ACPKM)

2. Security Issues with the ACPKM Transformation

3. A Related-key Distinguisher on CTR-ACPKM

4. ACPKM is not Misuse Resistant

Consider the case where $\kappa = 2n$

Consider the case where $\kappa = 2n$

What happens if $\Delta_X \xrightarrow{p} \Delta_Y$?

What happens if $\Delta_X \xrightarrow{p} \Delta_Y$?

- With probability p, $K_{j,1}||K_{j,2} = K_{j,1}||K_{j,1} \oplus \Delta_Y|$
- We find such a output difference by seeing O(1/p) sections in time $O(2^n/p)$

What happens if
$$0 \xrightarrow[]{\Delta_{\kappa}} 0$$
?

What happens if
$$0 \xrightarrow{p}{\Delta_{\mathcal{K}}} 0$$
?

What happens if $0 \xrightarrow{\rho}{\Delta_{\mathcal{K}}} 0$?

- Key entropy drops by about 0.66 bits in 1st update for a random function
- TEA's related-key properties lead to a drop of almost 2.34 bits in key entropy in the 1st update

• For the case where $\kappa = 4n$, we get even better attack

- For the case where $\kappa = 4n$, we get even better attack
- Here we can choose $\binom{4}{2}$ pairs from $\{D_1, D_2, D_3, D_4\}$

What happens if $\Delta_{X_1} \xrightarrow{\rho_1} \Delta_{Y_1}$ and $\Delta_{X_2} \xrightarrow{\rho_2} \Delta_{Y_2}$

What happens if $\Delta_{X_1} \xrightarrow{\rho_1} \Delta_{Y_1}$ and $\Delta_{X_2} \xrightarrow{\rho_2} \Delta_{Y_2}$

With probability p_1p_2 , the section key $K_j = K_{j,1} ||K_{j,2}||K_{j,3}||K_{j,4} = K_{j,1}||K_{j,1} \oplus \Delta_{Y_1}||K_{j,3}||K_{j,3} \oplus \Delta_{Y_2}$

- $K_j = K_{j,1} || K_{j,1} \oplus \Delta_{Y_1} || K_{j,3} || K_{j,3} \oplus \Delta_{Y_1}$ with probability p_1^2
- $K_j = K_{j,1} ||K_{j,2}||K_{j,1} \oplus \Delta_{Y_2}||K_{j,2} \oplus \Delta_{Y_2}$ with probability p_2^2

- $K_j = K_{j,1} || K_{j,1} \oplus \Delta_{Y_1} || K_{j,3} || K_{j,3} \oplus \Delta_{Y_1}$ with probability p_1^2
- $K_j = K_{j,1} ||K_{j,2}||K_{j,1} \oplus \Delta_{Y_2}||K_{j,2} \oplus \Delta_{Y_2}$ with probability p_2^2
- We note that, in RFC 8645: $D_1 \oplus D_2 = D_3 \oplus D_4$, $D_1 \oplus D_3 = D_2 \oplus D_4$ and $D_1 \oplus D_4 = D_2 \oplus D_3$.

1. Advanced CryptoPro Key Meshing (ACPKM)

2. Security Issues with the ACPKM Transformation

3. A Related-key Distinguisher on CTR-ACPKM

4. ACPKM is not Misuse Resistant

- 1. Attacks based on $\mathsf{H}_0\text{-entropy}$ loss
 - Proposed an improved exhaustive search for the section keys
 - Key collision attack in the multi-user setting
 - Key-recovery attack in the multi-user setting

- 1. Attacks based on $\mathsf{H}_0\text{-entropy}$ loss
 - Proposed an improved exhaustive search for the section keys
 - Key collision attack in the multi-user setting
 - Key-recovery attack in the multi-user setting
- 2. Importance of H_1 -entropy loss
 - H_1 -entropy loss is much more effective than H_0 -entropy loss
 - Proposed a novel master-key recovery attack based on H_1 -entropy loss

- 1. Attacks based on $\mathsf{H}_0\text{-entropy}$ loss
 - Proposed an improved exhaustive search for the section keys
 - Key collision attack in the multi-user setting
 - Key-recovery attack in the multi-user setting
- 2. Importance of $\mathsf{H}_1\text{-entropy}$ loss
 - H_1 -entropy loss is much more effective than H_0 -entropy loss
 - Proposed a novel master-key recovery attack based on H_1 -entropy loss
- 3. Related-key distinguisher on the CTR-ACPKM mode
 - Independent of the underlying primitive

- 1. Attacks based on $\mathsf{H}_0\text{-entropy}$ loss
 - Proposed an improved exhaustive search for the section keys
 - Key collision attack in the multi-user setting
 - Key-recovery attack in the multi-user setting
- 2. Importance of $\mathsf{H}_1\text{-entropy}$ loss
 - H_1 -entropy loss is much more effective than H_0 -entropy loss
 - Proposed a novel master-key recovery attack based on H_1 -entropy loss
- 3. Related-key distinguisher on the CTR-ACPKM mode
 - Independent of the underlying primitive
- 4. Attacks based on faulty or backdoored implementations of CTR-ACPKM
 - A malicious designer may further harm the mode
 - Attacks based on specific related-key differential property

Recommendations for the Use of ACPKM

- 1. Using ACPKM without changes can be acceptable in some cases:
 - Large initial key size
 - Implementation issues addressed
 - Appropriate warnings should be added to standards if still used

Recommendations for the Use of ACPKM

- 1. Using ACPKM without changes can be acceptable in some cases:
 - Large initial key size
 - Implementation issues addressed
 - Appropriate warnings should be added to standards if still used
- 2. Russian standards GOST 28147-89 (Magma) and Kuznyechik suggested for the use with ACPKM and CPKM
 - GOST has several related key differential properties
 - Multiple works suggest hidden design rationale in Kuznyechik
 - Design rationale of these ciphers is unknown

See the paper for other attacks...

Thank You for your attention! Any questions?

