
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 1, pp. 5–40. DOI:10.46586/tosc.v2023.i1.5-40

Subverting Telegram’s End-to-End Encryption

Benoît Cogliati, Jordan Ethan and Ashwin Jha

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
benoit.cogliati@gmail.com,{jordan.ethan,ashwin.jha}@cispa.de

Abstract. Telegram is a popular secure messaging service with third biggest user
base as of 2021. In this paper, we analyze the security of Telegram’s end-to-end
encryption (E2EE) protocol in presence of mass-surveillance. Specifically, we show
that Telegram’s E2EE protocol is susceptible to fairly efficient algorithm substitution
attacks. While official Telegram clients should be protected against this type of
attack due their open-source nature and reproducible builds, this could potentially
lead to a very efficient state sponsored surveillance of private communications over
Telegram, either on individuals through a targeted attack or massively through
some compromised third-party clients. We provide an efficient algorithm substitution
attack against MTProto2.0 — the underlying authenticated encryption scheme — that
recovers significant amount of encryption key material with a very high probability
with few queries and fairly low latency. This could potentially lead to a very
efficient state sponsored surveillance of private communications over Telegram, either
through a targeted attack or a compromised third-party app. Our attack exploits
MTProto2.0’s degree of freedom in choosing the random padding length and padding
value. Accordingly, we strongly recommend that Telegram should revise MTProto2.0’s
padding methodology. In particular, we show that a minor change in the padding
description of MTProto2.0 makes it subversion-resistant in most of the practical
scenarios. As a side-effect, we generalize the underlying mode of operation in
MTProto2.0, as MTProto-G, and show that this generalization is a multi-user secure
deterministic authenticated encryption scheme.

Keywords: Telegram · MTProto · algorithm substitution · key recovery

1 Introduction
Over the past two decades, smartphones have received widespread adoption across the
world. This resulted in a plethora of secure messaging services, such as WhatsApp, Signal,
Facebook Messenger, and Telegram, mushrooming over online app repositories.

Telegram, in particular, has more than 500 million active users worldwide [NIF21].
It recently saw a huge surge in subscribers [NIF21] after public outrage against the new
privacy policy changes announced by Facebook and WhatsApp. Indeed, over 100 million
new users joined Telegram in January 2021 [The21d], making it the most downloaded app
across iOS and Android [Cha21].

Telegram offers two conversation modes, the cloud chat mode and the secret chat mode.
Messages in cloud chats employ client-server/server-client encryption, and are stored on
the Telegram server in encrypted form. So, all messages can be read by the server, allowing
for chat history accessibility across devices. Messages in the secret chat mode employ
client-client or end-to-end encryption for only two parties. In this mode, the messages
are sent through the server, but can only be decrypted by the two parties involved in the
communication.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-09-01 Accepted: 2022-11-01 Published: 2023-03-10

https://doi.org/10.46586/tosc.v2023.i1.5-40
mailto:benoit.cogliati@gmail.com,jordan.ethan@cispa.de,ashwin.jha@cispa.de
http://creativecommons.org/licenses/by/4.0/

6 Subverting Telegram’s End-to-End Encryption

1.1 MTProto and Its Security
Telegram opted to use a home-brewed original protocol known as MTProto [The21c], both
for cloud chats as well as secret chats. At the heart of this protocol lies its eponymous
encryption scheme MTProto. In their online technical FAQ [The21b], the Telegram team
justified the use of an in-house encryption scheme, as opposed to some well-studied and
provably secure encryption scheme, as follows:

In order to achieve reliability on weak mobile connections as well as speed when
dealing with large files, MTProto uses an original approach.

However, the general cryptographic community is still skeptical of Telegram’s security claims
and justifications. Indeed, their skepticism is not entirely unfounded, as demonstrated by
the attacks on MTProto1.0 [JO16] by Jakobsen and Orlandi. In response to the attacks
in [JO16], the Telegram team revised the encryption scheme to MTProto2.0. In [The21a],
the Telegram team claims that the latest version of MTProto achieves IND-CCA [BN00]
security. However, to the best of our knowledge, a formal proof of security was noticeably
missing up until quite recently [AMPS22]. In fact, the Telegram team goes on to say that
security notions like IND-CCA while convenient for theoretical and scientific inquiry, do
not directly relate to the actual security of communication [The21a], and nothing short of
a full plaintext recovery or corruption is practically useful. In our opinion, this limited
security policy is quite detrimental to the privacy interests of Telegram’s users. Indeed,
cryptographic literature is filled with examples [BL16, SBK+17], where theoretical attacks
formed the basis for more efficient and practically relevant attacks.

In a quite recent work, Albrecht et al. finally presented a formal IND-CCA security proof
[AMPS22] for MTProto2.0. However, within the proof, they make several non-standard
assumptions on the underlying building blocks. To a large extent these assumptions are
necessitated by the design choices made in MTProto2.0. In addition, Albrecht et al. also
propose four attacks on MTProto2.0 by exploiting some vulnerable behaviors exhibited
by Telegram clients and servers in some boundary cases. In response, the Telegram team
updated the protocol to mitigate these boundary conditions.

1.2 Subversion Attacks
The veiled use of mass surveillance and web traffic interception by government agencies
became apparent due to the Snowden revelations. Among other things, it revealed that
the government agencies do not just apply intensive cryptanalytic techniques, but also
subvert cryptosystems to overcome well established cryptographic hard problems. One
such mechanism for subversion is to manipulate the algorithms used in implementations
by injecting a backdoor into otherwise secure implementations. A formal treatment of
such mechanisms predates the Snowden revelations, and was initiated in a line of work by
Young and Yung that they named kleptography [YY96, YY97]. Basically, Young and Yung
considered an adversary who designs a subverted cryptographic algorithm whose outputs
are computationally indistinguishable from the outputs of an unmodified algorithm. The
subverted algorithm should leak the secret key through the output, which was achieved
using principles similar to Simmons’ subliminal channels [Sim83].

The Snowden revelations reignited interest in this kind of subversion attacks, start-
ing with the so-called Algorithm Substitution Attacks (ASAs) by Bellare et al. [BPR14]
against randomized encryption schemes. Their attack relies on influencing the randomness
generated in the course of encryption. Specifically, the attack applies to a sub-class of
randomized schemes satisfying a property they call coin-injectivity. Degabriele et al. criti-
cized [DFP15] the perfect decryptability condition required from the subverted ciphertext
in BPR’s model. Bellare et al. improved over the attacks in [BPR14], proposing stateless
attacks [BJK15] against all randomized schemes. While previous attacks [BPR14, BJK15]

Benoît Cogliati, Jordan Ethan and Ashwin Jha 7

targeted the encryption algorithm, Armour and Poettering proposed an attack [AP19b]
by subverting the decryption algorithm. Hodges and Stebila explored the detectability
of ASAs via state resetting [HS21]. Apart from these attacks on (authenticated) encryp-
tion schemes, ASAs have also been proposed on message authentication code [AP19a],
signature schemes [AMV15, BSKC19, LCWW18], and key encapsulation mechanisms
[CHY20]. Additionally, Russell et al. consider ASAs on (trapdoor) one-way functions and
key generation, as well as a generic way to defend randomized algorithms against ASAs
[RTYZ16, RTYZ17, RTYZ18].

ASAs were conceptualized to model government sponsored eavesdropping on real world
protocols with millions of active users. So, it is just natural to explore these attacks against
secure messaging services like WhatsApp and Telegram. Recently, Berndt et al. studied
[BWP+20] the feasibility of ASAs on three popular protocols: TLS, WireGuard, and most
notably Signal — the cryptographic protocol used in several messaging apps, including
WhatsApp and Signal. To the best of our knowledge, such studies have not been conducted
on Telegram’s MTProto protocol.

1.3 Our Motivation
As pointed out by the Telegram security team in a private conversation, the code of
all their official apps is open source and their builds are reproducible. This obviously
makes massive subversion attacks against the Telegram official clients difficult to roll out.
However, targeted attacks at individuals could still be deployed. Moreover, closed-source
(or open source without reproducible builds) third-party clients would be easy to subvert.
This second scenario is our main motivation in this work: is it possible to mount an efficient
subversion attack against the authenticated encryption scheme that is used in Telegram?

1.4 Our Contributions
Our contributions are twofold.

First, we propose the first partial key recovery ASAs (see section 5) on the secret chat
mode of Telegram. Our attacks are completely passive in nature and incur significantly
less latency as compared to previous such attacks on generic authenticated encryption
schemes [BJK15, AP19b]. Our attack exploits the random length padding used in the
MTProto2.0 encryption. Strangely, each official client (desktop, android, iOS, tdlib library)
uses different padding algorithms. Our attack can be mounted with the padding algorithm
of the desktop client and the tdlib library (which can be used by third-party clients). As
per our undetectability proofs (see Theorem 5.1 and 5.2), our subverted algorithms are
indistinguishable from Telegram’s original encryption algorithm from the desktop client or
the tdlib library (depending on which one has been chosen for the corrupted client).

Second, we propose a minor change in the definition of MTProto2.0, that ensures all
the advantages of the existing algorithm, and thwarts the proposed key recovery attack. In
fact, we show that the modified algorithm is subversion-resistant in most of the practical
scenarios. This is done in three steps. First, we show that an abstraction of MTProto2.0,
called MTProto-G, is a secure deterministic authenticated encryption (DAE) scheme.
Second, we make three small changes, mainly in the padding algorithm of MTProto2.0, to
make the protocol deterministic. Finally, under the assumptions of perfect decryptability
and key-independent messages, we show that the modified protocol, called MTProto-D,
is subversion-resistant in context of algorithm substitution attacks, resulting in a more
secure solution for Telegram.

Responsible Disclosure to Telegram: We followed the standard responsible disclosure
policy and reported our findings to the Telegram security team in August 2021, along
with our suggestion to drop the randomness from the padding algorithm. As noted above,

8 Subverting Telegram’s End-to-End Encryption

they countered our findings by noting that the official Telegram apps are open source and
support reproducible builds that can be verified by independent researchers who regularly
audit the security of Telegram apps. In addition, they also asserted that cryptographic
keys can be leaked through various side channels as well. We pointed out that targeted
attacks at individuals are still a concerning possibility, and that the presence of side
channels only accentuates the impact of our attack, but the Telegram security team did not
believe it was a meaningful threat. We concluded our exchange with the Telegram team by
mentioning the issue of closed-source (or open source without reproducible builds) third-
party Telegram-compatible clients which will still be vulnerable to such mass-surveillance,
unless the algorithm is updated. Subsequently, in early December 2023, we also informed
several popular third-party Telegram-compatible clients about our findings.

2 Preliminaries
Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n}, and {0, 1}n denotes
the set of bit strings of length n. The set of all bit strings (including the empty string) is
denoted {0, 1}∗, and |X| denotes the number of bits in X ∈ {0, 1}∗. For any integer m,
{0, 1}≤m denotes the set of all bit strings of bit length at most m. For any two bit strings
M and M ′, we denote by M ||M ′ the concatenation of M and M ′. For any bit string z we
write z[a, b] for the sub-string of z from bit a to bit b (inclusive). For i, m ∈ N such that
i < 2m, we define ⟨i⟩m as the m-bit little endian encoding of the integer i.

The set of all functions from X to Y is denoted F(X ,Y), and the set of all permutations
of X is denoted P(X). Extending notation, for a finite set T , we denote by P̃erm(T ,X)
the set of all indexed permutations, families of permutations πt ∈ P(X), indexed by t ∈ T .
For a finite set X , X←$X denotes the uniform at random sampling of X from X .

Adversary: A (q, t)-adversary D is an interactive algorithm with access to an oracle,
that makes at most q oracle queries, runs in time at most t, and returns an output at the
end. In addition, we note that all the security notions in this paper are given in a general
multi-user security setting where the adversary can query any one of several independent
instances of the oracle at hand.

(Tweakable) Block Cipher: A block cipher family E, with key space K and block
space {0, 1}n, is a function family E = {Fk : {0, 1}n → {0, 1}n}k∈K, such that for any key
k ∈ K, Ek(·) is a permutation of {0, 1}n. We write E−k (·) to denote the inverse of Ek(·).

A tweakable block cipher family Ẽ, with key space K, tweak space T , and block space
{0, 1}n, is a function family Ẽ = {Fk : T × {0, 1}n → {0, 1}n}k∈K, such that for any key
k ∈ K and tweak t ∈ T , Ẽk(t, ·) is a permutation of {0, 1}n. We write Ẽ−k (t, ·) to denote
the inverse of Ẽk(t, ·).
Strong Pseudorandom Permutation: The security of any block cipher is formalized via
the notion of a strong pseudorandom permutation or SPRP game. We have illustrated
the SPRP game in the general multi-user setting in Figure 2.1. The advantage of any
adversary D against a block cipher E is defined as

Advsprp
E (D) =

∣∣∣Pr (Resprp
E (D) = 1)− Pr (Idsprp

E (D) = 1)
∣∣∣ .

We sometimes also use the restricted notion of Pseudorandom permutation (PRP), where
the adversary is only given access to O+. Formally, we define the PRP advantage of D
against E as

Advprp
E (D) =

∣∣∣Pr (Reprp
E (D) = 1)− Pr (Idprp

E (D) = 1)
∣∣∣ ,

Benoît Cogliati, Jordan Ethan and Ashwin Jha 9

Resprp
E (D) Idsprp

E (D)

u← 0

b← DNew,O±

return b =? 1

Oracle New()

u← u + 1
Ku ←$K

Πu ←$P({0, 1}n)

Oracle O+(x, i)

if i /∈ [u] then
return ⊥

y ← EKi (x)

y ← Πi(x)

return y

Oracle O−(y, i)

if i /∈ [u] then
return ⊥

x← E−
Ki

(y)

x← Π−
i (y)

return x
Figure 2.1: Strong pseudorandom permutation game.

Retprp
Ẽ

(D) Idtprp
Ẽ

(D)

u← 0

b← DNew,O

return b =? 1

Oracle New()

u← u + 1
Ku ←$K

Π̃u ←$ P̃erm(T , {0, 1}n)

Oracle O+(t, x, i)

if i /∈ [u] then
return ⊥

y ← ẼKi (t, x)

y ← Π̃i(t, x)

return y
Figure 2.2: Tweakable pseudorandom permutation game.

where Reprp
E (D) and Idprp

E (D) are defined similarly to their SPRP counterparts, except for
the restriction that D cannot query O−.
Tweakable Pseudorandom Permutation: The security of any tweakable block cipher is
formalized via the notion of a tweakable pseudorandom permutation or TPRP game. We
have illustrated the TPRP game in the general multi-user setting in Figure 2.2. The
advantage of any adversary D against a tweakable block cipher Ẽ is defined as

Advtprp
Ẽ

(D) =
∣∣∣Pr

(
Retprp

Ẽ
(D) = 1

)
− Pr

(
Idtprp

Ẽ
(D) = 1

)∣∣∣ .

Pseudorandom Function: The security of any keyed function is formalized via the notion
of a pseudorandom function or PRF game, illustrated for the general multi-user setting
in Figure 2.3. The PRF advantage of any adversary D against a keyed function family
F = {FK : X → Y}K∈K is defined as

Advprf
F (D) =

∣∣∣Pr
(

Reprf
F (D) = 1

)
− Pr

(
Idprf

F (D) = 1
)∣∣∣ .

A weaker version of the PRF notion does not allow arbitrary queries from the distinguisher.
Instead, the distinguisher receives a uniform and independent random input, and the
evaluation of the underlying function over this input, whenever it pings the oracle. The
weak PRF notion can also be interpreted as a game where adversary is constrained to
sample its input uniformly at random. Formally, we define the wPRF advantage of D
against F as

Advwprf
F (D) =

∣∣∣Pr
(

Reprf
F (D$) = 1

)
− Pr

(
Idprf

F (D$) = 1
)∣∣∣ ,

Reprf
F (D) Idprf

F (D)

u← 0

b← DNew,O

return b =? 1

Oracle New()

u← u + 1
Ku ←$K

Γu ←$F(X ,Y)

Oracle O(x, i)

if i /∈ [u] then
return ⊥

y ← FKi (x)

y ← Γi(x)

return y
Figure 2.3: Pseudorandom function game.

10 Subverting Telegram’s End-to-End Encryption

Repriv$
E (D) Idpriv$

E (D)

u← 0

b← DNew,O

return b =? 1

Oracle New()

u← u + 1
Ku ←$K

Γu ←$Flp(R×M,M)

Oracle O(m, i)

if i /∈ [u] then
return ⊥

R←$R
c← E+

Ki,R(m)

c← Γi(R, m)

return (R, c)
Figure 2.4: Priv$ game. Here Flp(R×M,M) denotes the set of all f : R×M to M such that
|f(r, m)| = |m| for all (r, m) ∈ R×M.

where D$ is used to denote the fact that D samples its queries uniformly at random at
each turn.

IV-based Encryption: A (K,R,M)-encryption scheme E is a tuple of algorithms
(E+, E−), defined over the key space K, IV space R, message and ciphertext space M,
where

E+ : K ×R×M→M E− : K ×R×M→M.

For all (k, r) ∈ K×R, E−k,r(·) := E−(k, r, ·), referred as the decryption algorithm, is defined
as the inverse of E+

k,r(·) := E+(k, r, ·), referred as the encryption algorithm, i.e., for all
m ∈M, E−k,r(E+

k,r(m)) = m. It is not necessary to release the IV along with the ciphertext
if the IV can be derived from the sequence number or the traffic secret (see e.g., TLS 1.3).
Without loss of generality we assume that the IV is released along with the ciphertext
in order to facilitate correct decryption. In most cases, including this work, E+

k,r(·) is
a length-preserving permutation for all (k, r) ∈ K × R. In this work we only consider
random IV schemes, i.e., the IV is sampled uniformly at random for each execution of the
encryption algorithm.

The security of any IV-based encryption scheme is formalized via the notion of a
Privacy game, illustrated for the general multi-user setting in Figure 2.4. The privacy
advantage of D against E is defined as

Advpriv$
E (D) :=

∣∣∣Pr
(

Repriv$
E (D) = 1

)
− Pr

(
Idpriv$

E (D) = 1
)∣∣∣ ,

Deterministic Authenticated Encryption: A (K,A,M, T)-deterministic authenti-
cated encryption scheme E is a tuple of algorithms (E+, E−) defined over the key space K,
associated data space A, message and ciphertext space M, and tag space T , where:

E+ : K ×A×M→ T ×M E− : K ×A× T ×M→M∪ {⊥},

and ⊥ denotes the error symbol indicating authentication failure. For all keys k ∈ K,
we write E+

k (·, ·) := E+(k, ·, ·), referred as the encryption algorithm, and E−k (·, ·) :=
E−(k, ·, ·), referred as the decryption algorithm. For correct decryption, it is required that
E−k (a, E+

k (a, m)) = m for all (k, a, m) ∈ K ×A×M.
The security of any deterministic authenticated encryption scheme is formalized via

the notion of a DAE game, illustrated for the general multi-user setting in Figure 2.5. The
DAE advantage of D against E is defined as

Advdae
E (D) :=

∣∣∣Pr
(

Redae
E (D) = 1

)
− Pr

(
Iddae
E (D) = 1

)∣∣∣ .

Benoît Cogliati, Jordan Ethan and Ashwin Jha 11

Redae
E (D) Iddae

E (D)

u← 0

b← DNew,O±

return b =? 1

Oracle New()

u← u + 1
Ku ←$K

Γu ←$FE

Oracle O+(a, m, i)

if i /∈ [u] then
return ⊥

(t, c)← E+
Ki

(a, m)

(t, c)← Γi(a, m)

return (t, c)

Oracle O−(a, t, c, i)

if i /∈ [u] then
return ⊥

m← E−
Ki

(a, t, c)

m← ⊥
return m

Figure 2.5: Deterministic authenticated encryption game, where FE = F(A×M, T ×M). In
order to avoid trivial wins, the adversary is not allowed to query oracle O− with an answer he
received from a query to O+.

2.1 Subversion Attacks
We formalize subversion attacks by following the definitions from [BJK15]. From a high
level, a subversion attack aims to replace an encryption scheme with a different keyed
algorithm, with the following two goals:

• the subversion should be difficult to distinguish from the actual encryption scheme
for someone who does not know the adversary’s key;

• the subversion should break the security of the subverted encryption scheme in some
way.

In this work, as in [BJK15], we focus on key-recovery attacks.
Let E = (E+, E−) be a symmetric (authenticated) encryption scheme with key space

K. A subversion of E is a tuple Ẽ = (K̃, Ẽ+, Ẽext), where the master-key space K̃ is a
non-empty set, such that:

• the subverted encryption algorithm Ẽ+ maps a tuple (KA, KE , A, M, σ) to a pair
(C, σ′), where A, M ∈ {0, 1}∗, KA ∈ K̃, KE ∈ K, C is a ciphertext and σ′ corresponds
to the update of the state σ;

• the key-recovery algorithm Ẽext takes as input a master key K̃, a vector of associated
data A, a vector of ciphertexts C, and produces a key guess K ∈ K.

We say that Ẽ is decryptable (with respect to E) if, for every plaintext M , every associated
data A, every key tuple (KE , KA) ∈ K × K̃ and every state σ, one has

E−KE
(A, Ẽ+

KA,KE
(A, M, σ)) = M.

Besides, if the state σ is never updated by the encryption algorithm, we say that Ẽ is
stateless. Otherwise, it is said to be stateful.
Undetectability: Clearly, a subversion attack can only be effective as long as it is hard
to detect. In this section, we focus on computational detection: the output of the attacker’s
encryption scheme should be indistinguishable from the output of the subverted scheme,
even from the point of view of the decryption algorithm. We formalize this notion with
the (multi-user) detection games presented in Figure 2.6. Our Undetectability definition
slightly differs from the Strong Undetectability notion from [BJK15] in two ways:

• we allow the subverted algorithm to also be stateful: looking ahead momentarily,
our goal is to model the behavior of secret chats in the MTProto protocol, which
maintain a state σ that counts the number of sent and received messages for each
key (see Section 4.2);

• in [BJK15], the attacker is allowed to choose the key of the encryption scheme E ,
while, in our game, the key is generated uniformly at random.

12 Subverting Telegram’s End-to-End Encryption

Redet
E,Ẽ

(D) Subdet
E,Ẽ

(D)

u← 0
KA ←$ K̃
b← DNew,Enc()
return b =? 1

Oracle New()

u← u + 1
σu ← ϵ

Ku ←$K
return (Ku, σu)

Oracle Enc(A, M, i)

if i /∈ [u] then
return ⊥

(C, σi)← E+
Ki

(A, M, σi)

(C, σi)← Ẽ+
KA,Ki (A, M, σi)

return (C, σi)
Figure 2.6: Games used to define detection of subversion Ẽ of encryption scheme E .

KrẼ(M, q)

(KE , KA)←$K × K̃

K ← Ẽext(KA,A, Enc(M, q))
return K =? KE

Oracle Enc(M, q)

σ′ ← ε

for i ∈ {1, . . . , q}
(Ai, Mi, σ′)←M(i, σ′)

(Ci, σ′)← Ẽ+
KA,KE (Ai, Mi, σ′)

return (Ai, Ci)
Figure 2.7: Games used to define the key recovery experiment of the subversion Ẽ of encryption
scheme E .

In a sense, we can think of our model as a Strong Undetectability notion in the Honest
setting, where the adversary is assumed to honestly generate encryption keys. We argue
that this restriction is natural. In our scenario, the attacker will either be Telegram servers,
a Telegram client, or an external observer that is trying to detect an ASA. These actors
all have an interest in keeping communications secure by generating the encryption keys
uniformly at random, instead of intentionally generating weak keys (for example by using
small order elements in a Diffie-Hellman key exchange in order to create a lot of key
collisions).

As usual, we measure the advantage of an algorithm D trying to distinguish between
the genuine encryption scheme E and its subversion Ẽ as follows:

Advdet
E,Ẽ

(D) :=
∣∣∣Pr

(
Redet
E,Ẽ

(D) = 1
)
− Pr

(
Subdet

E,Ẽ
(D) = 1

)∣∣∣ .

Key Recovery: The goal of a subversion attack is to break the security of the original
encryption scheme E in some way. The weakest possible goal would be to allow the
attacker to distinguish between Ẽ and an ideal encryption scheme. However, the practical
consequences of such an attack are small. Instead, we focus on attacks that allow the
recovery of part of the key of E , in order to allow the decryption of all ciphertexts.

Following [BJK15], we formalize the Key Recovery experiment in Figure 2.7. Note
that the game is parameterized by an algorithm M that samples new message queries
when given the current state σ′ (which may be different from the state maintained by the
protocol), and a number of queries q. We stress that our attack will work independently of
the choice ofM, and its success will only depend on the number of encryption queries. The
subversion attack is successful if Ẽext recovers the key KE from the ciphertexts produced
by Ẽ+ on messages produced by M, and its advantage is defined as:

Advkr
M,q(Ẽ) := Pr

(
KrẼ(M, q) = 1

)
Previous Subversion Attacks: In [BPR14], Bellare et al. present a very simple sub-
version attack again IV-based encryption schemes such that the IV is public in ciphertexts
(see Algorithm 2.1). It subversion attack simply encrypts the target key KE using the
adversarial key KA, and uses this value as IV for the first encryption query. The main
drawback of this attack is that it is inherently stateful: a simple state reset allows the

Benoît Cogliati, Jordan Ethan and Ashwin Jha 13

detection of the subversion, as it triggers an IV repetition. In order to avoid such simple
countermeasures and to make the attack usable against any randomized encryption scheme,
Bellare et al. introduce a new stateless substitution attack in [BJK15] (see Algorithm 2.2
for a description of the algorithm). The key idea is to rely on a second PRF F with output
space {0, 1} × {1, . . . , n} where n denotes the length of KE , and to sample IVs until the
corresponding ciphertext C satisfies FKA

(C) = (b, i), where KE [i] = b. No state is needed
anymore, but this comes at a cost: the attack is now randomized, and can fail to transmit
particular key bit. More general subversion attacks have been introduced later. As an
example, Armour and Poettering [AP19b] proposed another stateless attack that targets
the decryption algorithm of any authenticated encryption scheme. It works similarly to
the attack from [BJK15]: when the decryption algorithm is given a ciphertext such that
FKA

(C) = (b, i), where KE [i] = b, it will reject the ciphertext instead of decrypting. The
main difference with previous attacks is that this subversion comes at a functionality cost:
some valid ciphertexts get rejected. In order to avoid the easy detection of the attack, the
subverted algorithm will only test a small fraction of all ciphertexts.1

Algorithm 2.1 Pseudocode of the subversion attack from [BPR14]. Here E denotes an
IV-based encryption scheme, and E is a length-preserving deterministic encryption scheme.

function Ẽ+(KA, K, A, M, σ)
if σ = 0 then

iv← E(KA, K)
else

iv←$ {0, 1}n

end if
C ← E+(K, A, M, iv)
σ ← σ + 1
return (C, σ)

end function

function Ẽext((KA, A, C, i))
iv← iv(C[1])
K ← E−(KA, iv)
return K

end function

Algorithm 2.2 Pseudocode of the subversion attack from [BJK15]. Here E denotes
encryption scheme that uses n-bit IVs, E is a length-preserving deterministic encryption
scheme, and F a PRF with range {0, 1} × {1, . . . , k}, where k denotes the key size of E .
The state σ is constant (σ = ϵ), meaning that the attack is stateless.

function Ẽ+
s(KA, KE , M, A, σ)

j ← 0
do

j ← j + 1
r←$ {0, 1}n

C ← E+(KE , A, M, r)
(v, t)← F (KA, C)

while (j < s) and KE [t] ̸= v
return (C, ϵ)

end function

function Ẽext((KA, C, A, i))
K ← 0k

for i = 1, . . . , |C| do
(v, t)← F (KA, C)
K[t] = v

end for
return K

end function

1This is done at random by sampling a Bernoulli random variable in order to decide whether to attack
a particular ciphertext or not.

14 Subverting Telegram’s End-to-End Encryption

3 MTProto
Telegram clients rely on the MTProto protocol to secure communications. A message that
is typed by a user, or any application-defined message, first has to be enriched to include
additional information, along with a padding and some random bits; we refer to these as
protocol-enriched messages. Then, these plaintexts are encrypted using a DAE scheme
that is also dubbed MTProto. In this section, we focus on the description of the DAE
algorithm, while Section 4 is devoted to the description of the whole protocol.

3.1 Generic View of MTProto
MTProto can be viewed as a somewhat generic deterministic authenticated encryption
scheme, referred here as MTProto-G, that utilizes two independently keyed functions,
F : K1 × {0, 1}∗ → {0, 1}τ and G : K2 × {0, 1}τ → {0, 1}κ+n, and a ({0, 1}κ, {0, 1}n,M)-
encryption scheme E. As illustrated in Figure 3.1, the output of F serves two purposes:

1. obviously it acts as the authentication tag;

2. it acts as the input for deriving the keys and initialization values for the encryption
scheme E.

Lemma 3.1. Let MTProto-G be defined as above. For µ, qmax, q, ℓ, σ, t > 0, let A be a
(µ, qmax, q, ℓ, σ, t)-distinguisher against MTProto-G that runs in time at most t, and issues
at most q queries, of length at most ℓ n-bit blocks, for a total queries length µ, over at most µ
users, and such that each user is queried at most qmax. Then, there exist (µ, qmax, q, ℓ, σ, t′),
(µ, qmax, q, t̂), and (q, 1, q, ℓ, σ, ṫ) distinguishers B, C , and D , respectively, such that

Advdae
MTProto-G(A) ≤ Advprf

F (B) + Advwprf
G (C) + Advpriv$

E (D) + q

2τ
+ q2

2τ
, (1)

where t′ = O(t + qtF), t̂ = O(t + qtG), and ṫ = O(t + qtE).

Proof. First of all, we view MTProto-G as an instance of the SIV paradigm [RS06], where
F is used to generate the tag (also acts as the synthetic IV), and the combination of G and
E is viewed as an IV-based encryption scheme. More formally, we define a (K, {0, 1}τ ,M)-
encryption scheme E (also see Figure 3.1) as follows: for all k, t, m ∈ K × {0, 1}τ ×M, we
have

(l, iv) := Gk(t) c := E+
l,iv(m) E[G, E]+k,t(m) := c

Then, using the SIV composition result by Rogaway and Shrimpton [RS06, Theorem 2],
we have

Advdae
MTProto-G(A) ≤ Advprf

F (B) + Advpriv$
E

(A ′) + q

2τ
,

where A ′ is a (µ, qmax, q, ℓ, σ, t′′)-distinguisher for t′′ = O(t + qtE). Note that, the generic
reduction result in [RS06] is proved in single-key setting. However, exactly the same
approach generalizes to the multi-user setting as well. Next, by definition, one has

Advpriv$
E

(A ′) =
∣∣∣∣ Pr
(Ki)i∈[µ] ←$K

(
A ′

(E[GKi
,E]+)i∈[µ] = 1

)
− Pr

$

(
A ′

$ = 1
)∣∣∣∣

≤
∣∣∣∣ Pr
(Ki)i∈[µ] ←$K

(
A ′

(E[GKi
,E]+)i∈[µ] = 1

)
− Pr

(Γi)i∈[µ] ←$F(τ,κ+n)

(
A ′

(E[Γi,E]+)i∈[µ] = 1
)∣∣∣∣

Benoît Cogliati, Jordan Ethan and Ashwin Jha 15

m

FK1

t

GK2 E+

c

E

L

iv

t′

GK2 E−

c′

FK1=?

return m′ if True, and ⊥ otherwise.

E

L′

iv′

m′

t′

Figure 3.1: Encryption (top) and decryption (bottom) algorithms in MTProto-G. The dashed
rectangle represents the IV-based encryption scheme E.

16 Subverting Telegram’s End-to-End Encryption

+
∣∣∣∣ Pr
(Γi)i∈[µ] ←$F(τ,κ+n)

(
A ′

(E[Γi,E]+)i∈[µ] = 1
)
− Pr

$

(
A ′

$ = 1
)∣∣∣∣ . (2)

Now, all that remains is to show that there exists a (µ, qmax, q, t̂)-distinguisher C and a
(q, 1, q, ℓ, σ, ṫ)-distinguisher D such that the first absolute difference on the right hand side
is bounded by Advwprf

G (C) and the second difference is bounded by Advpriv$
E (D) + q2/2τ .

First, we construct the distinguisher C , which is trying to distinguish between (GKi($))i∈[µ]
and (Γi($))i∈[µ], where $ denotes the uniform distribution sampler implemented via a
uniform random function from M to T (courtesy Advprf

F (B)). We simply define C as the
distinguisher that runs A ′ in a black box manner, answering all its queries by applying
E+ (keyed with the answers given by its own oracle on uniform at random inputs) and
outputs the same value as A ′. Then, clearly, C correctly simulates (E[GKi($), E]+)i∈[µ]
when its oracle is (GKi

($))i∈[µ], and it correctly simulates (E[Γi, E]+)i∈[µ] when its ora-
cle is (Γi($))i∈[µ]. Moreover, C makes at most q queries to its oracle and runs in time
t̂ = O(t + qtG). Thus, we have

Advwprf
G (C) =

∣∣∣∣∣∣∣ Pr
$,

(Ki)i∈[µ]
←$K

(
C (GKi

($))i∈[µ] = 1
)
− Pr

$,
(Γi)i∈[µ] ←$

F(τ,κ+n)

(
C (Γi($))i∈[µ] = 1

)∣∣∣∣∣∣∣
≥

∣∣∣∣∣∣∣ Pr
(Ki)i∈[µ]
←$K

(
A ′

(E[GKi
,E]+)i∈[µ] = 1

)
− Pr

(Γi)i∈[µ] ←$

F(τ,κ+n)

(
A ′

(E[Γi,E]+)i∈[µ] = 1
)∣∣∣∣∣∣∣ . (3)

Before we move on to constructing the distinguisher D , we introduce a small change
in the game: instead of sampling the IVs for A ′’s oracle ((E[Γi, E]+)i∈[µ] or $) in a with
replacement fashion, we sample the IVs in a without replacement manner, i.e., all the
IVs will be distinct. Let the appropriately modified oracles be (Ẽ[Γi, E])i∈[µ] and $̃. This
switching is possible at the cost of two times the statistical distance between with and
without replacement samples of size q, i.e. q2/2τ . Formally, we have∣∣∣Pr

(
A ′

(E[Γi,E]+)i∈[µ] = 1
)
− Pr

(
A ′

$ = 1
)∣∣∣

≤
∣∣∣∣Pr

(
A ′

(E[Γi,E]+)i∈[µ] = 1
)
− Pr

(
A ′

(̃E[Γi,E]+)i∈[µ] = 1
)∣∣∣∣

+
∣∣∣∣Pr

(
A ′

(̃E[Γi,E]+)i∈[µ] = 1
)
− Pr

(
A ′

$̃ = 1
)∣∣∣∣

+
∣∣∣∣Pr

(
A ′

$̃ = 1
)
− Pr

(
A ′

$ = 1
)∣∣∣∣

≤
∣∣∣∣Pr

(
A ′

(̃E[Γi,E]+)i∈[µ] = 1
)
− Pr

(
A ′

$̃ = 1
)∣∣∣∣ + q2

2τ
. (4)

Now, we define D as a (q, 1, q, ℓ, σ, ṫ)-priv$ distinguisher that runs A ′ in a black box manner.
For each query (m, i) from A ′, D chooses a fresh user ID t from the set {0, 1}τ in a without
replacement manner. It then queries (m, t) to its own oracle (either (E+

Γi(t)(m))i∈[µ] or
(Γj(t, m))j∈[q]), where (Γj)j∈[q]←$Flp({0, 1}τ ×M,M), and returns (t, c) to A ′, where c
is the corresponding response of D ’s oracle. At the end D outputs the same value as A ′.
It is obvious to see that D correctly simulates $̃ when it is interacting with (Γj)j∈[q]. Also,
since Γ is a random function, D correctly simulates (Ẽ[Γi, E]+)i∈[µ] when it is interacting
with (E+

Γi(·))i∈[µ]. Moreover, D makes at most q queries to its oracle and runs in time

Benoît Cogliati, Jordan Ethan and Ashwin Jha 17

ṫ = O(t + qtE). Thus, we have

Advpriv$
E (D) =

∣∣∣∣∣∣∣ Pr
(Γi)i∈[µ]
←$F(τ,κ+n)

(
D

(E+
Γi(·))i∈[µ] = 1

)
− Pr

(Γj)j∈[q] ←$

Flp({0,1}τ×M,M)

(
D (Γj)j∈[q] = 1

)∣∣∣∣∣∣∣
≥

∣∣∣∣Pr
(

A ′
(̃E[Γi,E]+)i∈[µ] = 1

)
− Pr

(
A ′

$̃ = 1
)∣∣∣∣ . (5)

The result follows from Eq. (2)-(5).

3.2 MTProto2.0
In MTProto2.0, the three underlying functions, F, G, and E are constructed using the hash
function SHA-256 [NIS15] and the IV-based encryption mode of operation Infinite Garble
Extension [Cam78] or IGE.
SHA-256: It uses Merkle-Damgård paradigm [Mer89, Dam89] with a Davies-Meyer
compression function [PGV93] and length-strengthened padding. A simplified version
of SHA-256 algorithm is illustrated in Figure 3.2. Let r = 512, c = 256, ℓ = 64, and
f ∈ F(r + c, c). We define the length-strengthened padding function padr : {0, 1}<2ℓ →
{0, 1}r+, where {0, 1}r+ (resp. {0, 1}<2ℓ) denotes the set of (non-empty) bit strings whose
length is a multiple of r (resp. of length smaller than 2ℓ), by the mapping

m 7→ m∥10d∥⟨|m|⟩ℓ,

where d = min{i ≥ 0 : |m|+1+ i+ℓ (mod r) ≡ 0} and ⟨|m|⟩ℓ denotes the 64-bit unsigned
binary representation of |m|. Let iv ∈ {0, 1}c be some application constant. Formally, the
SHA-256 algorithm based on compression function f is defined as follows:

for all m ∈ {0, 1}<2ℓ , we write (m1, . . . , ml) := padr(m), h0 := iv,

hi := f(mi, hi−1)⊕ hi−1, 1 ≤ i ≤ l,

and finally, SHA-256(m) := hl. We refer to hi values as compression input and
the r-bit inputs as compression key.

iv f ⊕

m1

f ⊕

m2

f ⊕

m3

h4
h0 h1 h2

Figure 3.2: SHA-256 hash computation over a 3-block padded message m1∥m2∥m3 = padr(m).

Note that the mapping (mi, hi−1) 7→ hi applies the well-known Davies-Meyer transfor-
mation using f as the underlying primitive. In MTProto2.0, SHA-256 is exclusively used
to construct two hash based PRFs F and G. Before we describe these functions, we first
digress a little to discuss the security assumption on f vis-à-vis the security analysis of F
and G.
Security Assumption on f : It is worth noting that, f can actually be viewed as a block
cipher with an r-bit key and a c-bit block. Indeed, later we assume that the underlying
block cipher in SHA-256, i.e. the f function, is a tweakey block cipher — a tweakable
block cipher following the TWEAKEY framework by Jean et al. [JNP14]. Among other
things, this framework allows an intermixing of tweaks and keys as a single input called
tweakey. In context of our requirement, this can be looked in another way, where f , a

18 Subverting Telegram’s End-to-End Encryption

tweakey block cipher with key space {0, 1}κ
2 , tweak space {0, 1}r−κ

2 , and block space
{0, 1}c, can actually be seen as a tweakable block cipher with key space {0, 1}κ

2 , tweak
space B×{0, 1}r−κ

2 , and block space {0, 1}c, where B is a subset of all r-bit strings having
(r − κ

2) hamming weight. Further, each b = b0∥ · · · ∥br−1 ∈ B pinpoints the placement of
tweak bits (t ∈ {0, 1}r−κ

2) in the actual tweakey. For i = 0 to r− 1, if bi = 1, then the i-th
bit of the tweakey holds the next-in-line (starting from the first) bit of tweak t. While there
is no explicit analysis of this feature, the framework itself does not distinguish between
key and tweak, or their respective placement in the tweakey. Each choice of placement
gives a new TBC, which justifies our assumption. For example, as per the Deoxys v1.43
specification [JNPS18, Section 6.2] or the corresponding journal publication [JNPS21,
Section 5.3], the Deoxys-BC-256 block cipher can be made tweakable by announcing some
bits as tweak. Those bits are usually chosen to maximize performance, but their position
should have no impact on security as long as keys are uniformly random and independent.
Indeed practical examples like Skinny and Mantis [BJK+16] also satisfy this criteria, i.e.,
one can choose multiple b vectors freely to create multiple instances.

Specifically, in case of f , we define B = {Ba := 1τ∥0 κ
2 ∥1r−κ

2−τ∥1r−κ
2 , Bb := 0 κ

2 ∥1r−κ
2 }.

G function: For simplicity we assume a one-way communication from clients to the
server. Let κ = 576 and τ = 128. The G function takes a κ-bit key k = (k0, k1), where
|kb| = κ/2, and a τ -bit input x and produces a 2c-bit output y = (y0, y1), where |yb| = c.
Internally, G can be viewed as two parallel invocations of SHA-256 with independent keys.
Formally, for key (k0, k1) and input t, we have y = Gk(x) := (Gk0(x), G̃k1(x)), where

Gk0(x) := a[0, . . . , 7]||b[8, . . . , 23]||a[24, . . . , 31]
G̃k1(x) := b[0, . . . , 7]||a[8, . . . , 23]||b[24, . . . , 31]

and a = SHA-256(x∥k0), b = SHA-256(k1∥x). In Lemma 3.2, under the assumption that f
is a secure tweakey block cipher, we show that G is a secure weak PRF as is required in
Lemma 3.1.

Lemma 3.2. Let D be a (µ, q, t) wPRF distinguisher against G that issues at most q
queries over at most µ users, and runs in time at most t. Then there exists a (µ, 2q, t′)
TPRP distinguisher D′ against f such that we have

Advwprf
G (D) ≤ Advtprp

f (D′)

Proof. First, using the tweakey block cipher description of f , we can redefine a and b as:

a := fk0((Ba, x∥1031∥⟨τ⟩64), iv)⊕ iv
b := fk1((Bb, x∥1031∥⟨τ⟩64), iv)⊕ iv

where Ba = 1τ∥0 κ
2 ∥1r−κ

2−τ and Bb := 0 κ
2 ∥1r−κ

2 . Now, using a simple hybrid argument we
can replace all the instances of f with tweakable random permutations, which incur a cost
of at most Advtprp

f (D′). The remainder of the proof follows from the fact that the output
distribution of a tweakable random permutation is identical to a random function, given
that it is always invoked with distinct tweaks.

F function: This function is simply defined as Fk(m) := chopτ (SHA-256(k∥m)) for
all keys k ∈ {0, 1}r/2 and messages m ∈ {0, 1}ℓ, where chopτ (·) returns a substring of
its output of length τ bits. In essence, F is nothing but the popular hash-based MAC
construction called AMAC [BDL+11, BBT16]. In [BBT16], Bellare et al. showed that

Benoît Cogliati, Jordan Ethan and Ashwin Jha 19

Reprfleak
DMD,chopτ

(D) Idprfleak
DMD,chopτ

(D)

u← 0

b← DNew,O

return b =? 1

Oracle New()

u← u + 1
Ku ←$ {0, 1}c

Γu ←$F({0, 1}r, {0, 1}c)

return chopτ (Ku)

Oracle O(x, i)

if i /∈ [u] then
return ⊥

y ← DMDf (Ki, x)

y ← Γi(x)

return y
Figure 3.3: Pseudorandom function under leakage game.

AMAC is a multi-user secure PRF under the assumption that the underlying compression
function is a secure PRF under the presence of leakage. In the same paper, they also show
that under reasonable theoretical assumptions (ideal cipher model), a Davies-Meyer style
compression function is indeed secure PRF under the presence of leakage via truncation.
Here, we restate their result in our setting and for F. First, we define two keyed functions
DM[f] : {0, 1}r ×{0, 1}c → {0, 1}c and DMD[f] : {0, 1}c×{0, 1}r → {0, 1}c with r-bit and
c-bit keys respectively, as follows

DMf (k, x) := fk(x)⊕ x

DMDf (k, x) := DMf (x, k).

Pseudorandom Function under Leakage: We use the PRF security under leakage notion
by Bellare et al. [BBT16] described via the game in Figure 3.3. The PRF under leakage
advantage of any adversary D against DMD and leakage function chopτ is defined as

Advprfleak
DMDf ,chopτ

(D) :=
∣∣∣Pr

(
Reprfleak

DMDf ,chopτ
(D) = 1

)
− Pr

(
Idprfleak

DMDf ,chopτ
(D) = 1

)∣∣∣ .

Lemma 3.3 (Theorem 5.3 in [BBT16]). Let D be a (µ, q, ℓ, σ, t) PRF distinguisher against
F, that issues at most q queries of length at most ℓ n-bit blocks, over at most u users, for a
total queries length of at most σ n-bit blocks. Then, there exists (µ, q, t′′) and (µ, q, ℓ, σ, t′)
distinguishers A and B, respectively, such that

Advprf
F (D) ≤ 2Advprf

DMf
(A) + ℓAdvprfleak

DMDf ,chopτ
(B).

Infinite Garble Extension: The mode is an extension of CBC encryption [EMST76].
Basically, in addition to the CBC like ciphertext feed forward to the next block cipher
input, this mode also employs plaintext feed forward to the next block cipher output. It is
illustrated in Figure 3.4.

Formally, we define the IGE construction as follows: for a positive integer n and a
key k ∈ K, let Ek be a permutation of {0, 1}n. Let I = {0, 1}2n be the nonce space and
M = {0, 1}ℓn for some integer ℓ be the message space. For every m = (m1, . . . , mℓ) ∈M
and (iv1, iv2) ∈ I the encryption function is defined as,

E+
k,iv1,iv2

(m) = c = (c1, . . . , cℓ),

where

ci =
{

Ek(iv1 ⊕m1)⊕ iv2, i = 1
Ek(ci−1 ⊕mi)⊕mi−1, i > 1

.

Similarly, we define the decryption function as follows. For every c = (c1, . . . , cℓ) ∈M
and (iv1, iv2) ∈ I,

E−k,iv1,iv2
(c) = m = (m1, . . . , mℓ),

20 Subverting Telegram’s End-to-End Encryption

iv1 ⊕

m1

EL

⊕

c1

⊕

m2

EL

⊕

c2

⊕

m3

EL

⊕

c3

⊕

m4

EL

⊕

c4

⊕

m5

EL

⊕

c5

iv2

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

iv2 ⊕

c1

E−
L

⊕

m1

⊕

c2

E−
L

⊕

m2

⊕

c3

E−
L

⊕

m3

⊕

c4

E−
L

⊕

m4

⊕

c5

E−
L

⊕

m5

iv1

y1

x1

y2

x2

y3

x3

y4

x4

y5

x5

Figure 3.4: IGE encryption (top) and decryption (bottom) algorithms.

where

mi =
{

E−1
k (iv2 ⊕ c1)⊕ iv1, i = 1

E−1
k (mi−1 ⊕ ci)⊕ ci−1, i > 1

.

For most part of our analysis, only the privacy security of IGE will suffice. Accordingly,
we bound the advantage of a distinguisher that tries to distinguish between IGE and a
uniform random string generator in Lemma 3.4.

Lemma 3.4. Let A be a (µ, qmax, q, ℓ, σ, t) multi-user distinguisher against IGE, that runs
in time at most t, and such that each user u ∈ [µ] makes qu queries (the maximal number
of queries for a single user is denoted by qmax), each of length (in n-bit blocks) at most ℓ,
of total queries length at most σ. Then there exists a multi-user distinguisher A′ against
PRP with u users, at most qu · ℓ queries per user, and total σ queries across all users such
that,

Advpriv$
IGE (A) ≤ Advprp

E (A′) + 2µqmaxℓ2

2n
.

Proof. First, using a simple straightforward hybrid argument, for our adversary A there
exists a multi-user distinguisher A′ against PRP as described above such that,

Advpriv$
IGE (A) ≤ Advprp

E (A′) + δ(A),

where δ(A) is the advantage of A against IGE where the permutation for each user Eku

is replaced by a uniform random permutation of {0, 1}n. Note that all these random
permutations are independent from one another.

For the remainder of this proof we employ the Coefficient-H technique by Patarin
[Pat91, Pat08], which is a tool to upper bound the distinguishing advantage of any
deterministic and computationally unbounded distinguisher A in distinguishing the real
oracle R from the ideal oracle I. The collection of all queries and responses that A made
and received to and from the oracle, is called the transcript of A , denoted as τ .

Benoît Cogliati, Jordan Ethan and Ashwin Jha 21

Let Tre and Tid denote the transcript random variable induced by A ’s interaction with
R and I, respectively. Let T be the set of all transcripts. A transcript τ ∈ T is said to be
attainable if Pr (Tid = τ) > 0, i.e., it can be realized by A ’s interaction with I. Following
these notations, we state the main result of coefficient-H technique in Theorem 3.1. A
proof of this theorem is available in [CS14, MN17], among others.

Theorem 3.1. For ϵ1, ϵ2 ≥ 0, suppose there is a set Tbad ⊆ T , that we call the set of bad
transcripts, such that the following conditions hold:

• Pr (Tid ∈ Tbad) ≤ ϵ1; and

• For any τ /∈ Tbad, τ is attainable and Pr (Tre = τ)
Pr (Tid = τ) ≥ 1− ϵ2.

Then, for any computationally unbounded and deterministic distinguisher A , we have

AdvR;I(A) ≤ ϵ1 + ϵ2.

In our scenario, A prompts a user u ∈ [µ] and makes a query to one of two oracles.
The Real Oracle is the IGE construction (where the key used is ku) while the Ideal Oracle
is a function $u(·) that takes a message m ∈M and returns a uniform random string of
size n(ℓ + 2) that consists of a pair (ivu

1 , ivu
2) ∈ I and a cipher text c ∈M. In conclusion,

the distinguisher A has access to the following transcript,

τ(A) = {(mi,u, ci,u, ivi,u
1 , ivi,u

2) : u ∈ [µ], i ∈ [qu]},

where for every i ∈ [qu], mi,u, ci,u ∈M and iv = (ivi,1, ivi,2) ∈ I are chosen uniformly and
independently from I.

In order to upper bound the advantage of A over IGE we will need some notations.
Using the transcripts above, one can define the following intermediate values. For every
user u ∈ [µ], i ∈ [qu], j ∈ [ℓ] let

xu
i,j =

{
mi,u

1 ⊕ ivi,u
1 , j = 1

mi,u
j ⊕ ci,u

j−1, j > 1
, yu

i,j =
{

ci,u
1 ⊕ ivi,u

2 , j = 1,

ci,u
j ⊕mi,u

j−1, j > 1
.

Notice that if A prompts user u ∈ [µ] and gets an answer from the Real Oracle, then for
every (i, j) ̸= (i′, j′) ∈ [qu]× [ℓ], xu

i,j = xu
i′,j′ ⇔ yu

i,j = yu
i′,j′ . The property holds because

yu
i,j = Eku

(xu
i,j) , yu

i′,j′ = Eku
(xu

i′,j′) and Eku
is a permutation. Therefore when A receives

a transcript where this property does not hold he gains advantage. To avoid such scenarios,
we say a transcript τ is bad if one of the following conditions hold,

∃u ∈ [µ], (i, j) ̸= (i′, j′) ∈ [qu]× [ℓ] : xu
i,j = xu

i′,j′ , yu
i,j ̸= yu

i′,j′ , (B1)

∃u ∈ [µ], (i, j) ̸= (i′, j′) ∈ [qu]× [ℓ] : yu
i,j = yu

i′,j′ , xu
i,j ̸= xu

i′,j′ . (B2)

Finally, we denote by TBAD the set of all possible bad transcripts and by TGOOD the rest.
Next, notice that the probability that a transcript is bad is non zero only if we invoke

the Ideal Oracle. Hence, by the definition of $u(·), for every (i, j) ̸= (i′, j′) the random
variables ci,u

j and ci′,u
j′ are independent uniform random variables over {0, 1}n. Then, one

has,
Pr(xu

i,j = xu
i′,j′) = Pr

(
ci,u

j−1 ⊕ ci′,u
j′−1 = mi,u

j ⊕mi′,u
j′

)
= 1

2n
.

Similarly,
Pr(yu

i,j = yu
i′,j′) = 1

2n

22 Subverting Telegram’s End-to-End Encryption

In conclusion,

Pr(τ(A) ∈ TBAD) = Pr(τ(A) satisfy B1) + Pr(τ(A) satisfy B2)

≤
∑

u∈[µ]

∑
(i,j) ̸=(i′,j′)∈[qu]×[ℓ]

Pr(xu
i,j = xu

i′,j′ , yu
i,j ̸= yu

i′,j′)

+ Pr(yu
i,j = yu

i′,j′ , xu
i,j ̸= xu

i′,j′) ≤
2µqmaxℓ2

2n
.

Finally, we analyze the probability to encounter a given good transcript τ(A). For the
Real Oracle one has,

Pr (Tre = τ(A)) =
µ∏

u=1

1
22qun · (2n)quℓ

.

While for the Ideal Oracle,

Pr (Tid = τ(A)) =
µ∏

u=1

1
2qun(ℓ+2) .

It is easy to see that for every user u ∈ [µ],

2qunℓ

(2n)quℓ
≥ 1

Hence,
Pr (Tre = τ)
Pr (Tid = τ) =

µ∏
u=1

2qunℓ

(2n)quℓ
≥ 1

In conclusion, according to Theorem 3.1,

Advpriv$
IGE (A) ≤ Advprp

E (A′) + 2ℓ2µqmaxℓ2

2n
.

Note that, in context of MTProto-G, for each message a uniform at random (assuming
KDF is PRF) key is chosen from the key space. Therefore, qmax is essentially 1. Also, IGE
is slightly stronger as compared to the usual IV-based encryption used in SIV, i.e., the
CTR mode. In case of IGE even if two IVs collides, there is still some security as long as
the first block of the corresponding messages are different. This does not hold for CTR
mode. Now combining the results in Lemma 3.1, 3.2, 3.3, and 3.4 we get the following
security bound for MTProto2.0.

Corollary 3.1. For µ, q, ℓ, σ, t > 0, the DAE security of MTProto2.0 is given by

Advdae
MTProto2.0(A) ≤ 2Advprf

DMf
(B) + ℓAdvprfleak

DMDf ,chopτ
(B′) + Advtprp

f (C)

+ Advprp
E (D) + 2µqmaxℓ2

2n
+ q

2τ
+ q2

2τ

4 Presentation of the Full MTProto2.0 Protocol
4.1 Client-Server Encrypted Communication
Encoding of a Message. Like in MTProto 1.0, the DH key exchange is used to generate
a shared key between the sender and the receiver. After the key exchange, the sender and
the receiver share a 2048-bit symmetric key denoted by K and an additional key fingerprint

Benoît Cogliati, Jordan Ethan and Ashwin Jha 23

f defined as the last 64 bits of SHA-1 on K. This fingerprint is used as a sanity check for
the key exchange procedure to detect bugs in the software implementation. Moreover, in
order to keep past communications safe, the secret key is regenerated once a key has been
used for more than 100 messages or more than a week.
Next, we define the protocol enriched message X as:

X := salt∥session_id∥message_id∥seq_no∥message_data_length
∥message_data, (6)

where

• salt(64-bit) - Changed every 30 minutes (separately for each session) at the request
of the server. All subsequent messages must contain the new salt (although, messages
with the old salt are still accepted for a further 30 minutes). Required to protect
against replay attacks and certain tricks associated with adjusting the client clock to
a moment in the distant future.

• session_id(64-bit) - Generated by the client to distinguish between individual
sessions (for example, between different instances of the application, created with
the same authorization key). The session in conjunction with the key identifier
corresponds to an application instance.

• message_id(64-bit) - Time-dependent number used uniquely to identify a message
within a session. Client message identifiers are divisible by 4, server message identifiers
modulo 4 yield 1 if the message is a response to a client message, and 3 otherwise.
Client message identifiers must increase monotonically (within a single session), the
same as server message identifiers, and must approximately equal unixtime ∗ 232.
This way, a message identifier points to the approximate moment in time the message
was created. A message is rejected over 300 seconds after it is created or 30 seconds
before it is created (this is needed to protect from replay attacks). In this situation,
it must be re-sent with a different identifier (or placed in a container with a higher
identifier). The identifier of a message container must be strictly greater than those
of its nested messages.

• seq_no(32-bit) - Equal to twice the number of “content-related” messages (those
requiring acknowledgment, and in particular those that are not containers) created
by the sender prior to this message and subsequently incremented by one if the
current message is a content-related message. A container is always generated after
its entire contents; therefore, its sequence number is greater than or equal to the
sequence numbers of the messages contained in it.

• message_data_length(32-bit).

• message_data.

In addition, we also have the random padding value, random_padding, that consists
of 12 to 1024 bytes to make its length divisible by 16 bytes (the sampling is described in
detail in Section 4.1). Finally, we define the fully encoded message for encryption X′ as

X′ := X∥random_padding (7)

Let y be a chat parameter defined as y = 0 for messages from client to server and y = 8
otherwise. We define the authentication tag t, first let k1 = K[88 + y, . . . , 119 + y]
be some middle bytes of the shared key then we define t = Fk1(X′). Notice that t
is also used for deriving keys in the encryption of E. In order to use the encryption
scheme E, we first generate the key and iv for the encryption scheme. For that let

24 Subverting Telegram’s End-to-End Encryption

k2 = K[y, . . . , 35 + y], k3 = K[40 + y, . . . , 75 + y] be some part of the shared key then for
k = (k2, k3) we have that Gk(t) = (l, iv).

Finally, the encryption scheme (uses AES-256 with IGE mode) is defined as, E+
l,iv(X′) = c,

where the final cipher-text returned is defined as the string, (f ||t||c).

Sampling of a Random Padding. The padding algorithm of MTProto2.0 is uncommon,
and deserves to be described in more details. Indeed, the padding is filled with random
bits, and its length is also chosen at random2. It is worth noting that each official
client seems to use a different algorithm to randomize padding length. Since our goal
is to focus on building a hypothetical malicious client, we will present the two length
randomization algorithms that are best suited to our attack. We start with the algorithm
of the desktop client. Let us assume that we want to encrypt a σ-byte message M . Let
us write σ = 16q + 4r + s, where 0 ≤ r < 4, and 0 ≤ s < 4. The padded message will
consist σ′ = 4q + r + f(r) + 4Rand(0, 15) 32-bit blocks, where f(0) = 4, f(1) = 3 f(2) = 6,
f(3) = 5, and Rand(0, 15) denotes an integer that is chosen uniformly at random between
0 and 15. In particular, this means that, after padding, the length of the plaintext in
32-bit blocks will be

σ′ = 4 (q + ⌊r/2⌋+ 1 + Rand(0, 15)) .

Let us define the function

g : N −→ N
16q + 4r + s 7−→ q + ⌊r/2⌋+ 1.

Then, one clearly has σ′ = 4(g(σ) + Rand(0, 15)), and thus the size of the padded data in
128-bit blocks will be σ128 = g(σ)+Rand(0, 15). In particular, it means that σ128 mod 16
is uniformly random. An equivalent way of sampling this value would be to generate a
random integer v ∈ {0, . . . , 15}, to write g(σ) = 16q′+r′, and then to choose σ128 = 16q′+v
if v ≥ r′, or σ128 = 16(q′ + 1) + v otherwise. This second sampling mechanism will prove
useful in the following section. We will denote this alternative padding rule pad(M, v),
where M is padded to a message whose length in 16-byte blocks is equal to v modulo 16.

Similarly, we discuss the length randomization algorithm from the tdlib library, that
can be used to develop third-party clients. Let σ be the byte-length of the message to be
encrypted. The length of the padded message will be

σ′ = 16×
⌊

σ + 27 + Rand(0, 255)
16

⌋
.

Like in the previous case, σ′/16 mod 16 will be uniformly random, and we can similarly
define a reverse padding mechanism with the exact same probability distribution, where
we generate the target σ′/16 mod 16 value ℓ uniformly at random, and then the padded
message length as

σ′ = 16×
⌊

σ + 27 + (ℓ× 16 + Rand(0, 15)− σ − 27 mod 256)
16

⌋
.

4.2 End to End Encrypted Communication Protocol
Encoding of a Message. The encoding of a message is almost identical to the one in
Section 4.1. The difference lies in the definition of protocol enriched message X (see Eq.
(6)) and the chat parameter (y is equal to 0 if the current user is the chat creator and
otherwise y = 8). In this setting, X is defined as

X := length∥payload_type∥random_bytes∥layer∥in_seq_no
2Although it seems optional in the source code of Telegram, we focus on the randomized-length padding

scheme, as the official documentation presents this one.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 25

∥out_seq_no∥message_type∥message_data, (8)

The auxiliary information can be summarized using the following fields.

• length (32-bit): Length of the payload.

• payload_type (32-bit).

• random_bytes (≥ 128-bit): Set of random bytes to prevent content recognition in
short encrypted messages. Clients are required to check that there are at least 15
random bytes included in each message. Messages with less than 15 random bytes
must be ignored.

• layer (32-bit): Layer number.

• in_seq_no (32-bit): Twice the number of messages in the sender’s inbox (including
deleted and service messages), incremented by 1 if current user was not the chat
creator.

• out_seq_no (32-bit): Twice the number of messages in the recipient’s inbox
(including deleted and service messages), incremented by 1 if current user was the
chat creator.

• message_type (32-bit).

• message_data.

Note that, the sequence numbers are especially important for our subversion attack
presented in Section 5. Finally, the fully encoded message X′ in secret chat setting is
generated by appending a random padding in exactly the same fashion (see Eq. (7)) as in
the client-server chat. Besides, some Telegram clients do check that the random padding
is at least 12 bytes long (notably the iOS client).

5 Subverting Secret Chats in MTProto2.0
As previously discussed in Section 2.1, state reset is a simple countermeasure that can
make stateful subversion attacks easy to detect. In the general case, it is thus important to
design stateless subversion attacks. When attacking encryption schemes used in complex
protocols, this requirement can sometimes be alleviated. For example, if the protocol
maintains an internal counter that is given to the encryption scheme via associated data
or plaintext, then a subversion attack can simply rely on this external counter in order to
act as a stateful attack, even if it does not directly maintain its state. This is exactly what
happens during secret chats, as the MTProto2.0 protocol relies on sequence counters in
order to uniquely identify each message. In more details, from any encryption query, it is
possible to extract a monotonically increasing counter that only depends on the number of
encryption queries issued by the client, and the only time where these counters are reset
is during the rekeying of the authenticated encryption scheme. We can thus rely on this
counter in order to mount a stateful substitution attack.3

For the remainder of this section, we focus on the MTProto authenticated encryption
scheme (without associated data). Moreover, we fix a padding scheme that generates
ciphertexts whose length in 128-bit blocks is uniformly distributed modulo 16.4 In order
to create a subversion attack, we have to find a way to exploit the randomization of the

3Even though the state is maintained by the protocol and not by the encryption scheme, we still make
it explicit in the pseudocode of our attacks.

4This is the case for the desktop client and the tdlib library.

26 Subverting Telegram’s End-to-End Encryption

encryption scheme in order to exfiltrate key bits. As described in Section 4.1, although the
random values used as input are encrypted and authenticated, part of the randomized length
of the padding is still visible by an adversary. It is thus possible to modify Algorithm 2.1 in
order to exploit these characteristics to transmit 4 bits of key material for each encrypted
message, as seen in Algorithm 5.1.

Algorithm 5.1 Pseudocode of our subversion attack. Here σ denotes the internal counter
of the MTProto protocol corresponding to key K that appears in the header of each message
(it is not updated by the encryption algorithm), E is a length-preserving deterministic
encryption scheme, E is the MTProto AE scheme, and pad denotes its padding algorithm,
as presented in section 4.1.

function Ẽ+(KA, K, M, σ)
Y ← E(KA, K)
if σ ≤ ⌈|K|/4⌉ then

len← Y [4σ, 4σ + 3]
else

len←$ {0, . . . , 15}
end if
M ← pad(M, len)
(C, T)← E+(K, M)
return (C, T)

end function

function Ẽext(KA, C, σ)
r ← ⌈|K|/4⌉
Y ← ||rj=0⟨|C[j]|/16 mod 16⟩4
Y ← ⟨Y ⟩|K|
K ← E−(KA, Y)
return K

end function

It is clear that, as long as E is secure, Ẽ+ is indistinguishable from E+ in the context of
the execution of MTProto2.0, and that the key recovery always succeeds given a sufficient
number of ciphertexts. Formally, one has the following result.
Theorem 5.1. Let qk ≥ ⌈|K|/4⌉, and let D be an adversary against the strong detectability
of Ẽ, as defined in Algorithm 5.1, that uses at most q queries to at most u users, for a
total of at most l bits, and runs in time at most t. Then there exists a distinguisher D′

against the security of E that uses at most u queries, and runs in time t + O(l), such that:

Advdet
E,Ẽ

(D) ≤Advwprf
E (D′),

Advkr
M,qk

(Ẽ) =1.

A state actor that has subverted the encryption algorithm of a client, and has access
to the server-side (encrypted and ordered) transcript of the conversation, will thus be
able to recover 4 key bits per message sent between two rekeying steps with probability 1.
Unfortunately, this is not sufficient to break the security of MTProto. Indeed, each key can
only encrypt or decrypt at most 100 messages. This limits the number of key bits that can
be targeted to a maximum of 400, and more realistically to around 200 bits (assuming each
party sends around 50 messages each). Since MTProto keys are much longer, this is not
sufficient to allow a realistic guess of the remaining bits. Fortunately, the only source of
randomness that has been used for the subversion attack is the length of the padded data.
It is still possible to exploit the random generation of the padding bits to mount a variant
of the attack from Algorithm 2.2, thus sending more key bits, at a heavier computational
cost. The pseudocode of this new attack can be found in Algorithm 5.2. Given the fact
that the MTProto protocol is an authenticated encryption scheme in two passes, we have
optimized our attack by applying the FK′

A
function to the authentication tag instead of

to the whole ciphertext. We stress that this also allows us to defer the encryption pass
after the main loop of Ẽ+

δ,s has terminated, and to only compute it once, even if the
authentication step has been repeated s times.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 27

Algorithm 5.2 Pseudocode of the updated subversion attack Ẽ+
δ,s. We use the same

notation as in Algorithm 5.1, and F a PRF with range {0, 1}δ. Ciphertexts are denoted
(C, T) where T refers to the authentication tag.

function Ẽ+
δ,s(KA, K ′A, K, M, σ)

Y ← E(KA, K)
if σ ≤ ⌈|K|/(4 + δ)⌉ then

len← Y [(4 + δ)σ, (4 + δ)σ + 3]
else

len←$ {0, . . . , 15}
end if
i← 0
do

M ′ ← pad(M, len)
T ← F(K, M ′)
X ← FK′

A
(T)

b← X =? Y [(4+δ)σ+3, (4+δ)(σ+
1)− 1]

i← i + 1
while (not b) and (i < s)
(L, iv)← G(K, T)
C ← E+(L, iv, M ′)
return (C, T)

end function

function Ẽext
δ,s(KA, C, σ)

Y ← ϵ
for i ∈ {1, . . . , |K|/(4 + δ)} do

Y ← Y ||⟨|C[i]|/16 mod 16⟩4
Y ← Y ||FK′

A
(T)

end for
K ← E−(KA, ⟨Y ⟩|K|)
return K

end function

In order to study this new attack, we follow [BJK15] and introduce the min-entropy
H∞(E .Auth) of the (randomized) tag generation algorithm E .Auth.5 Formally, we define

2−H∞(E.Auth) = max Pr (E .AuthK(pad(M, len)) = T),

where the maximum is taken over all possible keys K, plaintexts M , tag values T , and
padding lengths len, and the probability is taken over the uniformly random draw of the
(at least 96) padding bits. Our results assume that 2−H∞(E.Auth) is small. One has the
following result with respect to the detectability and key recovery success of this algorithm.

Theorem 5.2. Let q ≥ ⌈|KE |/(4 + δ)⌉, and let D be an adversary against the strong
detectability of Ẽ, as defined in Algorithm 5.2, that uses at most q queries to at most u
users, for a total of at most l bits, and runs in time at most t. Then there exists DE, and
DF , such that

• DE makes at most 1 query per user to E, u queries in total, and runs in time
t + O(sql);

• DF makes at most sq queries per user to F , and runs in time t + O(sql),

and

Advdet
E,Ẽδ,s

(D) ≤ Advwprf
E (DE) + Advprf

F (DF)

+ u2

2|K| + q2s22−H∞(E.Auth)−1.

5This corresponds to the sampling of the padding, and the computation of F .

28 Subverting Telegram’s End-to-End Encryption

Further, there exists D′F such that D′F makes at most sq queries per user to F , and runs
in time t + O(sql), and

Advkr
M,q(Ẽδ,s) ≥ 1−Advprf

F (D′F)

− q

(
1− 1

2δ

)s

− q2s22−H∞(E.Auth)−1.

Proof. The proof is very similar to the proofs of [BJK15, Theorems 4.1 and 4.2]. We
provide it in two parts for the sake of completeness.

5.1 Proving the Strong Undetectability of the Subversion Attack
First, we consider undetectability. We will employ a sequence of games as shown in Figure
5.1 and 5.2. One has

Advdet
E,Ẽ

(D) ≤
∣∣∣Pr

(
Subdet

E,Ẽ
(D)

)
− Pr

(
Redet
E,Ẽ

(D)
)∣∣∣

≤
∣∣∣Pr

(
Subdet

E,Ẽ
(D)

)
− Pr (I0)

∣∣∣
+

∣∣∣Pr (I0)− Pr (I1)
∣∣∣ +

∣∣∣Pr (I1)− Pr (I2)
∣∣∣

+
∣∣∣Pr (I2)− Pr (I3)

∣∣∣
+

∣∣∣Pr (I3)− Pr
(

Redet
E,Ẽ

(D)
)∣∣∣ .

The only difference between the games Subdet
E,Ẽ

(D) and I0 is the fact that Y is sampled
using EKA

in Subdet
E,Ẽ

(D), whereas it is sampled using a lazily-sampled random function in
I0. Thus one has ∣∣∣Pr

(
Subdet

E,Ẽ
(D)

)
− Pr (I0)

∣∣∣ ≤ Advwprf
E (DE).

Games I0 and I1 are identical until there is a collision between the keys of two users.
Hence we have ∣∣∣Pr (I0)− Pr (I1)

∣∣∣ ≤ Pr (I1 sets bad) ≤ u2

2|K| .

In Game I2, FK′
A

is replaced with a lazily sampled uniformly random function, which gives∣∣∣Pr (I1)− Pr (I2)
∣∣∣ ≤ Advprf

F (DF).

Games I2 and I3 are identical until there is a tag collision. Thus∣∣∣Pr (I2)− Pr (I3)
∣∣∣ ≤ Pr (I3 sets bad)

≤ q2s22−H∞(E.Auth)−1,

where E .Auth denotes the tag generation algorithm of E+. Finally, the Games I3 and
Redet
E,Ẽ

(D) are identical. Indeed, in Game I3, the condition that stops the while loop is
completely independent from the generated ciphertext, which means that the distribution
of the outputs of both encryption oracles are completely identical, and

Pr (I3) = Pr
(

Redet
E,Ẽ

(D)
)

.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 29

Subdet
E,Ẽδ,s

(D)

u← 0
(KA, K′

A)←$ K̃
b← DNew,Enc()
return b = 1

Oracle New()

u← u + 1
σu ← 0
Ku ←$K

Oracle Enc(M, A, i)

if i /∈ [u] then
return ⊥

Y ← EKA (Ki)
if σi ≤ ⌈|Ki|/(4 + δ)⌉

len← Y [(4 + δ)σi,

(4 + δ)σi + 3]
else

len←$ {0, . . . , 15}
j ← 0
do

M ′ ← pad(M, len)
(C, T)← E+

Ki
(M ′)

X ← FK′
A

(T)
b← X = Y [(4 + δ)σi + 3,

(4 + δ + 1)σi − 1]
j ← j + 1

while (not b) and (j < s)
σi ← σi + 1
return (C, T)

I0 I1

u← 0
(KA, K′

A)←$ K̃
S ← ∅
b← DNew,Enc()
return b = 1

Oracle New()

u← u + 1
Ku ←$K
σu ← 0
Yu ←$ {0, 1}|Ku|

if (Ku, y) ∈ S

bad← true
Yu ← y

S ← S ∪ {(Ku, Yu)}

Oracle Enc(M, A, i)

if i /∈ [u] then
return ⊥

if σi ≤ ⌈|Ki|/(4 + δ)⌉
len← Yu[(4 + δ)σi,

(4 + δ)σi + 3]
else

len←$ {0, . . . , 15}
j ← 0
do

M ′ ← pad(M, len)
(C, T)← E+

Ki
(M ′)

X ← FK′
A

(T)
b← X = Yu[(4 + δ)σi + 3,

(4 + δ + 1)σi − 1]
j ← j + 1

while (not b) and (j < s)
σi ← σi + 1
return (C, T)

Figure 5.1: Games Subdet
E,Ẽδ,s

(D), I0, and I1 used in the proof from Section 5.1.

30 Subverting Telegram’s End-to-End Encryption

I2 I3

u← 0
(KA, K′

A)←$ K̃
L← ∅
b← DNew,Enc()
return b = 1

Oracle New()

u← u + 1
σu ← 0
Ku ←$K
Yu ←$ {0, 1}|Ku|

Oracle Enc(M, A, i)

if i /∈ [u] then
return ⊥

if σi ≤ ⌈|Ki|/(4 + δ)⌉
len← Y [(4 + δ)σi,

(4 + δ)σi + 3]
else

len←$ {0, . . . , 15}
j ← 0
do

M ′ ← pad(M, len)
(C, T)← E+

Ki
(M ′)

X ←$ {0, 1}δ

if (T, x) ∈ L

bad← true
X ← x

L← L ∪ {(T, X)}
b← X = Y [(4 + δ)σi + 3,

(4 + δ + 1)σi − 1]
j ← j + 1

while (not b) and (j < s)
σi ← σi + 1
return (C, T)

Redet
E,Ẽδ,s

(D)

b← DNew,Enc()
return b = 1

Oracle New()

u← u + 1
σu ← 0
Ku ←$K

Oracle Enc(M, A, i)

if i /∈ [u] then
return ⊥

(C, T)← E+
Ki

(M, σi)
σi ← σi + 1
return (C, T)

Figure 5.2: Games I2, I3, and Redet
E,Ẽδ,s

(D) used in the proof from Section 5.1.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 31

H0 H1

(K, (KA, K′
A))←$K × K̃

Γ←$F({0, 1}∗, {0, 1}δ)

σ′ ← ϵ

r ← ⌈|K|/(4 + δ)⌉
Y ← E(KA, K)
for σ = 1, . . . , r

i← 0
b← false
(M, σ′)←M(σ′)
j ← 0
while (not b) and (j < δ)

len←$ {0, . . . , 15}
M ′ ← pad(M, len)
(C, T)← E+(K, M ′)
X ← F (K′

A, T)

X ← Γ(T)

b← X = Y [(4 + δ)σ + 3,

(4 + δ)(σ + 1)− 1]
j ← j + 1

if not b

return 1
return 0

H2 H3

bad← false
(K, KA)←$K × K̃
σ′ ← ϵ

L← ∅
r ← ⌈|K|/(4 + δ)⌉
Y ← E(KA, K)
for σ = 1, . . . , r

i← 0
b← false
(M, σ′)←M(σ′)
j ← 0
while (not b) and (j < δ)

len←$ {0, . . . , 15}
M ′ ← pad(M, len)
(C, T)← E+(KE , M ′)
X ←$ {0, 1}δ

if (T, x) ∈ L

bad← true
X ← x

L← L ∪ {(T, X)}
b← X = Y [(4 + δ)σ + 3,

(4 + δ)(σ + 1)− 1]
j ← j + 1

if not b

return 1
return 0

Figure 5.3: Games used in the proof from Section 5.2.

32 Subverting Telegram’s End-to-End Encryption

5.2 Lower Bounding the Probability of Key Recovery
As the final part of the proof, our goal is to lower bound the success probability of Ẽs,δ. In
order to do so, we will use the sequence of games that are defined in Figure 5.3. First of
all, we are going to switch our point of view and to consider the probability that it fails.
Second, since the only possibility of failure comes from the new sampling mechanism for
the content of the padding, we are simply going to replace the sampling of the padding
length by a uniformly random draw6. Now, we are going to start by replacing F in the
pseudocode of Ẽ by its ideal counterpart. Hence, one has

1−Advkr
M,q(Ẽs,δ) = Pr (H0) ≤ Pr (H1) + Advprf

F (D′F),

where D′F is an adversary against the PRF-security of F that runs H0, and replaces the
calls to F by calls to its oracle. Hence, D′F issues at most sq queries to its oracle, and runs
in time t + O(sql), where l is an upper bound on the number of bits thatM(q) can output.

Game H2 is identical to game H1 since Γ has been replaced by its equivalent lazy
sampling. Finally, game H3 is identical to game H2 until there exists a tag repetition, in
which case game H3 breaks the consistency with a simulated random function by sampling
a new random value every time. By the fundamental Lemma of game playing [BR06], we
have

1−Advkr
M,q(Ẽs,δ) = Pr (H1) + Advprf

F (D′F)

≤ Pr (H2) + Advprf
F (D′F)

≤ Pr (H3) + Pr (H3 sets bad)

+ Advprf
F (D′F).

Clearly, the event H3 sets bad implies that the game has created some tag collision in its
at most qs encryption queries. Given that the inputs to E are nonce-respecting since M
simulates a run of the MTProto protocol, one has

Pr (H3 sets bad) ≤ q2s22−H∞(E.Auth)−1,

where E .Auth denotes the tag generation algorithm of E+.
The last remaining step is to upper bound the probability that H3 returns 1. In that

case, for every σ, the only way for H3 to return 1 is if every draw of X fails to be equal to
the corresponding bits of Y . Since a fresh uniformly random X is drawn at every execution
of the loop, the probability that 1 is returned at each iteration of the for loop is thus(

1− 1
2δ

)s

.

Overall, one has

1−Advkr
M,q(Ẽs,δ) ≤ q

(
1− 1

2δ

)s

+ q2s22−H∞(E.Auth)−1

+ Advprf
F (D′F).

6We stress that it holds because the part of the attack that exploits the randomized length of the
padding cannot fail. We will not be able to use the same simplification when considering the strong
undetectability of the attack.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 33

5.3 Impact of our Attack
The attack presented in the last section targets the MTProto AE scheme. We have to take
into account the fact that this scheme is used in the broader MTProto protocol: a single
key is used for the encryption of at most 100 messages. The dominating term from the
success probability bound is clearly q

(
1− 1

2δ

)s, where q ≤ 100. Table 5.1 presents several
possible choices of δ and s, and provides the associated probability to recover a number k
of key bits given the number of victim queries.

Given the huge key size of the MTProto AE scheme and the numbers from Figure 5.1,
targeting a full key recovery does not seem reasonable. Instead, if the goal of the adversary
is to allow decryption of a high percentage of sent messages, one possible choice is to target
the part of the MTProto key that is used during the encryption pass, which is 576 bits long.
Assuming that the victim sends around 50 messages per key, choosing δ = 8 and s = 1485
allows the complete recovery of the encryption key with a probability around 0.85. Of
course, this comes at a computational cost: the subverted client will have to repeat the
authentication step at most 1485 times. The increased energy consumption may become
noticeable. A more modest choice (δ = 6 and s = 369) will allow the recovery of most key
bits with a high probability, while being computationally cheaper. Note that, even though
the authentication pass has to be evaluated between 1 and s times, it is still possible to
save the internal state of the SHA-256 hash function after the absorption of the message,
and to start the authentication pass from this value for every choice of padding values.
This reduces the computational overhead to its minimal value.
Table 5.1: This table presents an approximated lower bound on the probability to recover k bits
of key material with the subversion attack Ẽδ,s, under the assumption that the adversary does at
least the specified number of queries.

δ s num. of queries k success probability
2 21 10 60 ≥ 0.97
2 21 50 300 ≥ 0.88
2 21 100 600 ≥ 0.76
4 91 10 80 ≥ 0.97
4 91 50 400 ≥ 0.85
4 91 100 800 ≥ 0.71
6 369 10 100 ≥ 0.97
6 369 50 500 ≥ 0.85
6 369 100 1000 ≥ 0.70
8 1485 10 120 ≥ 0.97
8 1485 50 600 ≥ 0.85
8 1485 100 1200 ≥ 0.70
10 5946 10 140 ≥ 0.97
10 5946 50 700 ≥ 0.85
10 5946 100 1400 ≥ 0.70

Our attack requires access to a reliable counter. This is offered by the MTProto
protocol in the case of secret chats. On the contrary, client-server chats do not offer such
a convenient counter. There are possible workarounds for this issue:

• our algorithm can be made stateful, at the cost of making it detectable with a simple
state reset;

• a randomized encryption scheme can be used instead of the length-preserving scheme
E when computing Y in Algorithm 5.2; after each state reset, a new IV would be
generated uniformly at random and stored as a state, along with a counter; doing
this would reduce the number of sent key bits (both due to the need to send the IV

34 Subverting Telegram’s End-to-End Encryption

bits, and to the fact that after resetting, the attacker will start sending the same key
bits a second time), but it would also mitigate the impact of state resets;

• since the client-server key is long-lived, we can afford to transmit key bits very slowly;
hence, Algorithm 2.2 can be used.

5.4 Instantiating F and E

Our subverted algorithm(s) require a length-preserving encryption scheme E and a PRF
F . Here, we briefly discuss possible instantiation for these components.

Choice of F : From Table 5.1, we observe that efficient instances of our attacks set
δ ≤ 10. So, we can simply reuse the AES-256 block cipher as F and truncate the output
to δ bits. Since the output size δ is quite small, for all practical purposes, we can simply
assume that truncated AES-256 is a perfect random function.

Choice of E: As for E, one can apply a wide-block block cipher, or a format-preserving
encryption scheme to achieve the wPRF security requirement. However, these schemes
are not flexible enough as they require the whole ciphertext (encrypted K) for correct
decryption.

In fact, on a closer look, one can observe that all we need is a sufficiently long keystream
to mask K. So, an efficient stream cipher, or block keystream generator like the Ctr mode
are sufficient. Unfortunately, they require a seed, which makes them prone to detection via
state reset. Instead, we instantiate E with an efficient online encryption scheme [BBKN01].

An online encryption scheme E′ is a length-preserving encryption scheme that satisfies
the online property: for all key KA, any input x is a prefix of another input x′ if and
only if E′KA

(x) is a prefix of E′KA
(x′). Essentially, the online property implies that we can

encrypt and decrypt in an on-the-fly manner, i.e., as soon as a full block7 of ciphertext is
available, it can be decrypted based on the past ciphertext blocks. So, the online cipher
could be an efficient trade-off between a format-preserving cipher and a stream cipher.
Further note that, E′ behaves close to uniform random function as long as its inputs do
not share any prefixes. So, it is easy to see that E′(K) will be uniform at random and
independent across different sessions, as long as the first block of K do not collide across
sessions.

Fortunately, one of the components in MTProto satisfies online property. IGE with
some fixed IV value is a secure online cipher in the known plaintext setting. Now, within
E, one can either instantiate IGE with AES-256 to reuse the MTProto components directly,
or instantiate IGE with a smaller block cipher, say with 64-bit block, to reduce the amount
of ciphertext required for correct decryption of any ciphertext bit.

Let Ẽ denote the block cipher used within E. Overall, one can show that E can be
instantiated with IGE at the cost of O

(
u2/2n

)
+ Advprp

Ẽ
(u), where n denotes the block

size of Ẽ. A proof for this bound is easy to derive. Basically, the bound O
(
u2/2n

)
comes

from two cases: first, we get a u2/2n term due to the probability that the first n bits of
keys across two distinct sessions (or users) collide; and second, IGE behaves as a secure
online cipher, in the known plaintext setting, up to a cost of c2u2/2n, where c = ⌈|K|/n⌉
is a small constant.

6 Averting Subversion of MTProto2.0
The most effective countermeasure is to get rid of the randomized padding algorithm.
Simply changing the padding length randomization is not sufficient, as the value of the
padding can always still be used to transmit δ bits of data per ciphertext (instead of

7Here, block is used in context of the underlying block cipher of E′.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 35

4 + δ bits in Algorithm 5.2). Another possible countermeasure would be to derive the
padding values in a deterministic way from the secret key (and possibly from the encrypted
message), and then to verify its value as the last step of the decryption procedure. This
would remove the ability of a subverted algorithm to manipulate the value and the length
of the padding, and prevent our attack. In this section, we describe one such method and
then go on to show that the modified algorithm is indeed subversion-resistant.

It is well-known [AP19b, DFP15] that perfect decryptability is a necessary condition
for any symmetric-key encryption scheme to be subversion-resistant. While perfect decrypt-
ability is a theoretical requirement, which is hard to maintain in practical settings, the
attacks targeting decryption algorithms are in general practically inefficient. So, we assume
perfect decryptability in our discussion. Additionally, Degabriele et al. also exhibited
input-triggered subversion [DFP15]. Indeed, the adversary can also exploit the ambiguity
in the message language to construct such attacks. Accordingly, it is necessary to have
independence between the keys and the message distribution. We assume that the messages
(including the protocol parameters) are sampled independently of the keys.

Unique ciphertexts: Consider (K,A,M, T)-deterministic authenticated encryption
scheme E . For any key K, any message M and any associated data A let C(K, M, A) be the
set of all ciphertexts (C, T) pair such that D(K, C, T, A) accepts with message M , meaning
its output is M for some τ . We say that E has unique ciphertexts if the set C(K, M, A) is
a singleton for all K, M, A, i.e., for each triple (K, A, M) there exists a unique ciphertext.
In [BPR14], Bellare et al. showed that having unique ciphertext property is sufficient for
averting subversion resistance in context of algorithm substitution attacks. So, all we need
to do is to enable the property of unique ciphertexts for MTProto2.0.

6.1 Changes in MTProto2.0: MTProto-D
We reuse the notations from Section 4.1 and 4.2. We define a modified protocol called
MTProto-D, by making four small changes in the definition of MTProto2.0:

1. First, we redefine Fk1(x) := chopτ+4(SHA-256(k1∥x)). Specifically, we extract an
extra 4 bits at the tag generation stage which will be used later in padding algorithm.

2. Second, we redefine the protocol enriched message random_bytes = 0128. This is
done specifically to avoid adversary’s control on the payload.

3. Third, we define (t, ℓ) = Fk1(X), where |t| = τ and |ℓ| = 4.

4. Fourth, we change the padding algorithm by

(a) first, redefining Rand(X) := ℓ, where ℓ is viewed as a 4-bit integer value, i.e.,
ℓ ∈ {0, . . . , 15}. Since, F is a secure PRF, we can assume that for all practical
purposes ℓ is uniform at random. So all we have done is eliminate the adversary’s
influence over the padding length, under the assumption of independence of
message distribution.

(b) second, sampling the random_padding in either one of the following way:
i. Set random_padding := 10d−1, where d is the length of the padding; or
ii. Set random_padding := FK′(X) for some secure PRF F and a key K ′

independent of the other keys.

In terms of security, first we note that MTProto-D loses at most 4-bit security since we now
release additional 4 bits via F. Second, it is worth noting that although the tag generation
is done just over the protocol enriched message, i.e., X, this does not hamper the security
of the protocol. This can be argued by the fact that we either set the random padding to
a constant value, or it is fully dependent on X. In both cases the decryption of ciphertext

36 Subverting Telegram’s End-to-End Encryption

blocks corresponding to the padding bits must either have a specific form or it must follow
an exact deterministic relation with X, which acts as a verification step for the padding
value. For the sake of simplicity we assume that padding follows 3.(b).i.

In Corollary 6.1, we show that MTProto-D is a subversion-resistant algorithm under
the assumption of perfect decryptability and an independent message distribution.

Corollary 6.1. Suppose the message distribution M is independent of keys and perfect
decryptability holds. Then, MTProto-D is subversion-resistant in context of algorithm
substitution attacks.

Proof. First note that once we fix a message, the padding length is fixed (since MTProto-D
is deterministic), whence the corresponding ciphertext length is fixed. Thus, for any triple
(K, A, M), the set C(K, A, M) has ciphertexts of equal lengths. Further, for each message
M , the ciphertext is generated over M∥10d−1 for a fixed d (depends on just K and M).
Thus, using the bijectivity property of IGE we conclude that C(K, M, A) is a singleton set
and hence, using [BPR14, Theorem 4], MTProto-D is a subversion-resistant algorithm.

6.2 A Note on the Independence of Message Distribution
In the proof of Corollary 6.1, we assume that the messages are independent of the keys.
This is necessary to avoid input-triggered subversion [DFP15]. Basically, the adversary
can influence the messages by introducing spurious space characters, rearrange certain
letters in some word, or even reorder multiple lines in a message.8

However, we note that such attacks, although of theoretical interest, are not of great
practical value. First, these attacks generally incur either a large latency or the number of
key bits extracted is quite low. Second, and more importantly, on the decryption end one
can employ language-specific techniques to detect any anomalies in the decrypted message.
For instance, one can restrict the set of allowed characters, and look for unnecessary spaces
before encryption itself. Also, based on the English language usage statistics, one can
come up with a threshold value used to determine if the messages are tampered with or
not. So in overly cautious applications, which should be the case for any secure messaging
app, it is fairly plausible to assume that the messages are indeed independent of the keys.

Acknowledgments
The authors would like to thank all the anonymous reviewers who reviewed and provided
valuable comments on this paper. The authors would also like to thank Antoine Joux, Cas
Cremers and Thorsten Holz for their help in preparing the final version of this paper. This
work was carried out under the framework of the French-German-Center for Cybersecurity,
a collaboration of CISPA and LORIA.

References
[AMPS22] Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors

Stepanovs. Four Attacks and a Proof for Telegram. In Security and Privacy –
IEEE-S&P 2022, Proceedings, pages 87–106, 2022.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-Resilient
Signature Schemes. In Computer and Communications Security – ACM-CCS
2015, Proceedings, pages 364–375, 2015.

8In context of Telegram this will correspond to reordering of chat messages.

Benoît Cogliati, Jordan Ethan and Ashwin Jha 37

[AP19a] Marcel Armour and Bertram Poettering. Substitution Attacks against Message
Authentication. IACR Trans. Symmetric Cryptol., 2019(3):152–168, 2019.

[AP19b] Marcel Armour and Bertram Poettering. Subverting Decryption in AEAD.
In Cryptography and Coding – IMACC 2019, Proceedings, pages 22–41, 2019.

[BBKN01] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Nam-
prempre. Online Ciphers and the Hash-CBC Construction. In Advances in
Cryptology – CRYPTO 2001, Proceedings, pages 292–309, 2001.

[BBT16] Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-Function Based
PRFs: AMAC and Its Multi-User Security. In Advances in Cryptology –
EUROCRYPT 2016, Proceedings, Part I, pages 566–595, 2016.

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-Speed High-Security Signatures. In Cryptographic Hardware and
Embedded Systems – CHES 2011, Proceedings, pages 124–142, 2011.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-Surveillance without the
State: Strongly Undetectable Algorithm-Substitution Attacks. In Computer
and Communications Security – ACM-CCS 2015, Proceedings, page 1431–1440,
2015.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
Advances in Cryptology – CRYPTO 2016, Proceedings, Part II, pages 123–153,
2016.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical (In-)Security
of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN.
In Computer and Communications Security – ACM-CCS 2016, Proceedings,
pages 456–467, 2016.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition Paradigm.
In Advances in Cryptology – ASIACRYPT 2000, Proceedings, pages 531–545,
2000.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of Sym-
metric Encryption against Mass Surveillance. In Advances in Cryptology –
CRYPTO 2014, Proceedings, pages 1–19, 2014.

[BR06] Mihir Bellare and Philip Rogaway. The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. In Advances in Cryptology
– EUROCRYPT 2006, Proceedings, pages 409–426, 2006.

[BSKC19] Joonsang Baek, Willy Susilo, Jongkil Kim, and Yang-Wai Chow. Subversion
in Practice: How to Efficiently Undermine Signatures. IEEE Access, 7:68799–
68811, 2019.

[BWP+20] Sebastian Berndt, Jan Wichelmann, Claudius Pott, Tim-Henrik Traving, and
Thomas Eisenbarth. ASAP: Algorithm Substitution Attacks on Cryptographic
Protocols. IACR Cryptol. ePrint Arch., 2020:1452, 2020.

[Cam78] C. M. Campbell. Design and Specifcation of Cryptographic Capabilities.
In Computer Security and Data Encryption Standard, National Bureau of
Standards Special Publications 500-27, pages 54–66, 1978.

38 Subverting Telegram’s End-to-End Encryption

[Cha21] Julia Chan. Top Apps Worldwide for January 2021 by Downloads.
Sensor Tower Blog, 2021. Online: https://sensortower.com/blog/
top-apps-worldwide-january-2021-by-downloads. Accessed: June 28,
2021.

[CHY20] Rongmao Chen, Xinyi Huang, and Moti Yung. Subvert KEM to Break
DEM: Practical Algorithm-Substitution Attacks on Public-Key Encryption.
In Advances in Cryptology – ASIACRYPT 2020, Proceedings, Part II, pages
98–128, 2020.

[CS14] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Advances in Cryptology – EUROCRYPT 2014, Pro-
ceedings, pages 327–350, 2014.

[Dam89] Ivan Damgård. A Design Principle for Hash Functions. In Advances in
Cryptology – CRYPTO 1989, Proceedings, pages 416–427, 1989.

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A More
Cautious Approach to Security Against Mass Surveillance. In Fast Software
Encryption – FSE 2015, Revised Selected Papers, pages 579–598, 2015.

[EMST76] William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message Verification and Transmission Error Detection by Block Chaining.
Patent 4074066, USPTO, 1976.

[HS21] Philip Hodges and Douglas Stebila. Algorithm Substitution Attacks: State
Reset Detection and Asymmetric Modifications. IACR Trans. Symmetric
Cryptol., 2021(2):389–422, 2021.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Advances in Cryptology – ASI-
ACRYPT 2014, Proceedings, Part II, pages 274–288, 2014.

[JNPS18] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys 1.43,
2018.

[JNPS21] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. The Deoxys
AEAD Family. J. Cryptol., 34(3):31, 2021.

[JO16] Jakob Jakobsen and Claudio Orlandi. On the CCA (in)Security of MTProto.
In Security and Privacy in Smartphones and Mobile Devices – SPSM@CCS
2016, Proceedings, pages 113–116, 2016.

[LCWW18] Chi Liu, Rongmao Chen, Yi Wang, and Yongjun Wang. Asymmetric Subver-
sion Attacks on Signature Schemes. In Information Security and Privacy –
ACISP 2018, Proceedings, pages 376–395, 2018.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Advances in
Cryptology – CRYPTO 1989, Proceedings, pages 428–446, 1989.

[MN17] Bart Mennink and Samuel Neves. Optimal PRFs from Blockcipher Designs.
IACR Trans. Symmetric Cryptol., 2017(3):228–252, 2017.

[NIF21] Jack Nicas, Mike Isaac, and Sheera Frenkel. Millions Flock to Tele-
gram and Signal as Fears Grow Over Big Tech. The New York
Times, 2021. Online: https://www.nytimes.com/2021/01/13/technology/
telegram-signal-apps-big-tech.html. Accessed: June 28, 2021.

https://sensortower.com/blog/top-apps-worldwide-january-2021-by-downloads
https://sensortower.com/blog/top-apps-worldwide-january-2021-by-downloads
https://www.nytimes.com/2021/01/13/technology/telegram-signal-apps-big-tech.html
https://www.nytimes.com/2021/01/13/technology/telegram-signal-apps-big-tech.html

Benoît Cogliati, Jordan Ethan and Ashwin Jha 39

[NIS15] NIST. Secure Hash Standard (SHS). Fedral Information Processing Standards
Publication FIPS 180-4, National Institute of Standards and Technology, U.
S. Department of Commerce, 2015.

[Pat91] Jacques Patarin. Etude des Générateurs de Permutations Pseudo-aléatoires
Basés sur le Schéma du DES. PhD thesis, Université de Paris, 1991.

[Pat08] Jacques Patarin. The “Coefficients H” Technique. In Selected Areas in
Cryptography – SAC 2008, Revised Selected Papers, pages 328–345, 2008.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on
Block Ciphers: A Synthetic Approach. In Advances in Cryptology - CRYPTO
’93, Proceedings, pages 368–378, 1993.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Advances in Cryptology – EUROCRYPT 2006,
Proceedings, pages 373–390, 2006.

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptogra-
phy: Clipping the Power of Kleptographic Attacks. In Advances in Cryptology
– ASIACRYPT 2016, Proceedings, Part II, pages 34–64, 2016.

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic
Semantic Security against a Kleptographic Adversary. In Computer and
Communications Security – ACM-CCS 2017, Proceedings, pages 907–922,
2017.

[RTYZ18] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Correcting
Subverted Random Oracles. In Advances in Cryptology – CRYPTO 2018,
Proceedings, Part II, pages 241–271, 2018.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The First Collision for Full SHA-1. In Advances in Cryptology –
CRYPTO 2017, Proceedings, Part I, pages 570–596, 2017.

[Sim83] Gustavus J. Simmons. The Prisoners’ Problem and the Subliminal Channel.
In Advances in Cryptology – CRYPTO 1983, Proceedings, pages 51–67, 1983.

[The21a] The Telegram Team. FAQ for the Technically Inclined – What about IND-
CCA? Telegram website, 2021. Online: https://core.telegram.org/
techfaq/mtproto_v1#what-about-ind-cca. Accessed: June 28, 2021.

[The21b] The Telegram Team. FAQ for the Technically Inclined – Why did you
use a custom protocol? Telegram website, 2021. Online: https://core.
telegram.org/techfaq#q-why-did-you-go-for-a-custom-protocol. Ac-
cessed: June 28, 2021.

[The21c] The Telegram Team. Mobile Protocol. Telegram website, 2021. Online:
https://core.telegram.org/mtproto. Accessed: June 28, 2021.

[The21d] The Telegram Team. Moving Chat History from Other Apps. Telegram News,
2021. Online: https://telegram.org/blog/move-history. Accessed: June
28, 2021.

[YY96] Adam L. Young and Moti Yung. The Dark Side of "Black-Box" Cryptography,
or: Should We Trust Capstone? In Advances in Cryptology – CRYPTO 1996,
Proceedings, pages 89–103, 1996.

https://core.telegram.org/techfaq/mtproto_v1#what-about-ind-cca
https://core.telegram.org/techfaq/mtproto_v1#what-about-ind-cca
https://core.telegram.org/techfaq#q-why-did-you-go-for-a-custom-protocol
https://core.telegram.org/techfaq#q-why-did-you-go-for-a-custom-protocol
https://core.telegram.org/mtproto
https://telegram.org/blog/move-history

40 Subverting Telegram’s End-to-End Encryption

[YY97] Adam L. Young and Moti Yung. Kleptography: Using Cryptography Against
Cryptography. In Advances in Cryptology – EUROCRYPT 1997, Proceeding,
pages 62–74, 1997.

	Introduction
	MTProto and Its Security
	Subversion Attacks
	Our Motivation
	Our Contributions

	Preliminaries
	Subversion Attacks

	MTProto
	Generic View of MTProto
	MTProto2.0

	Presentation of the Full MTProto2.0 Protocol
	Client-Server Encrypted Communication
	End to End Encrypted Communication Protocol

	Subverting Secret Chats in MTProto2.0
	Proving the Strong Undetectability of the Subversion Attack
	Lower Bounding the Probability of Key Recovery
	Impact of our Attack
	Instantiating F and E

	Averting Subversion of MTProto2.0
	Changes in MTProto2.0: MTProto-D
	A Note on the Independence of Message Distribution

